International Journal of Image Processing Techniques
Author(s) : SANGHUN YUN, WON-SEOK KANG
Medical imaging is playing the key role in diagnosing and treatment of diseases. For making accurate decisions, the images acquired by various medical imaging modalities must be free from noise. So image de-noising became an important pre-processing step in Medical image analysis. In this paper, we propose a new de-noising method for medical images. Our method divides up the medical image into multiwindows and assigns the optimal mother wavelet function to each windows. And we are using an n-gram based wavelet learning technique in order to investigate optimal wavelet sequences for an image de-noising. The wavelet learning approach uses Mean Square Error (MSE) as a feature to generate an n-gram table. The performance of the proposed method is compared with the existing methods using Peak Signal to Noise Ratio (PSNR). The results showed that the proposed method has a better PSNR than the previous methods.