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ABSTRACT: The resonant nonlinear Schrödinger equa-
tion (NLSE) having quadratic-cubic nonlinearity for describ-
ing pulse phenomena and studied in nonlinear optics. We 
achieved optical soliton and solitary wave solutions of reso-
nant NLSE with quadratic-cubic nonlinearity by employing 
extended simple equation method, which have key applica-
tions in engineering and applied physics. The stability of 
model is examined by employing the modulation instability 
analysis, which shows that the obtained exact solutions are 
stable. We also given the movement of some achieved solu-
tions graphically, which facilitates to recognize the physical 
phenomena’s of this nonlinear model.  
keywords: Improved Simple equation method, nonlinear 
schrödinger equation with quadratic-cubic nonlinearity, 
Soli-tons, periodic solutions, Solitary wave. 

 

1 Introduction 
 
In several branch of engineering and applied science, non-
linear phenomena exist naturally. Several non-linear evolu-
tion equations (NLEEs) have been derived to explain these 
real nonlinear situations. The nonlinear Schrödinger equa-
tions in NLEEs have been considered as the models to il-
lustrate some non-linear phenomenon in different areas 
such as condensed matter physics, fluids, fluid dynamics, 
quantum mechanics, plasmas, optics, biophysics and parti-
cle physics [1–7]. The studies of the analytical solutions in 
different form for example solitons, solitary wave and so on 
to different types of nonlinear Schrödinger equations have 
become a very significant practice by various scholars [8]. 
The solutions of NLSEs play a very important role in solving 
the problems of real-life. Soliton for the different NLSEs 
have been searched to investigation the non-linear phenom-
enas, where the solitons might be whichever dark or bright 
on the information of the governing NLSEs [9–12], and dark 
one is a mark with a characteristic phase step crossways it, 
while the amplitude of bright soliton is peak [13].  

In the previous many decades, the non-linear dynamics 

 
 
 
 
of optical solitons are structured by the famous NLSE [14] 
which has been investigated widely. Ahead of 1997, re-
searchers have been focused almost on the optical solitons 
in restricted non-linear media having refractive index (RI) at 
a specific position is only associated to intensity of the beam 
at same position. The nonlinear nonlocal model was 
projected by the authors in [15] that permits the RI of a 
object at a specific point to be associated to the intensity of 
beam at every other points of objects in the year of 1997. 
Consequently, the nonlocal solitons attained much concen-
tration, and numerous new solitons are established, such as 
gray solitons [16], Gaussian and higher-order Gaussian 
solitons [15], vector Laguerre–Gaussian solitons [17], mul-
tipole and dipole solitons [18], surface solitons [19] and so 
on [20, 21]. The solitons in different reveal various dis-
tinctive properties, such as shift of large phase [22], self-
induced mode transformation [23], attraction between dark 
solitons [24], long-range interaction [25]. These days vari-
ous engineering methods have been build to investigate the 
non-linearity of the non-linear media [26]. 
 

The constructing of analytical solutions in the form of 
solitons and solitary wave of non-linear Schrödinger equa-
tions have been examined generally and intensely in var-
ious features as it was developed. Many powerful and 
efficient techniques have been developed to attain solu-tions 
in the form of soltion and solitary wave for example semi-
inverse variational principle [27], modified direct alge-braic 
method [28], Kudryashov method [20], F-Expansion method 
[6], Elliptic function method [30], simple equa-tion scheme 
[31],Darboux transformation [32], similarity transformations 
method [33], expansion method [34], exp-function method 
[35], (G0 =G)-expansion scheme [36] and many more [37–

42]. The researchers in [43] investigated the dynamical 
manners of the NLSE.  

In many branches of physics, modulation instability (MI) is 
fundamental procedure [5, 6, 28], which arises as a out-
come of the collaboration between diff raction in the spatial 
domain or dispersion in the time domain and nonlinearity. 
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The acumen in the media of non-Kerr has verified to be an 
immensely exciting study field in MI, for scrutinize promul-
gation of an optical pulse in NLSE of higher order [44]. The 
significant cause behind is that the modulation instability 
may be supposed as, to the ancestor of soliton construction.  

In the current article, the exact solitons and solitary 
wave solutions in different form of resonant NLSE, for 
quadratic-cubic nonlinearity are constructed by the 
described extended simple equation scheme. The 
achieved analytical solutions are novel and more 
generalized. The stability of achieved solutions are 
discuss by utilizing modulation instability anal-ysis.  

The rest of this article is structured as follows: The the-
oretical model is illustrated in Section 2. The key steps of 
modified F-expansion scheme are presented in Section 3. 
In Section 4, the appliance of the described scheme is 
pre-sented. In Section 5, the MI analysis is used to 
discuss the stability of model. The results and discussion 
of achieved exact solutions are discussed in Section 6. In 
Last section, the conclusion is revealed. 

 

2 Theoretical Model 
 

The observing resonant non-linear Schrödinger 
equation with Quardatic Cubic (QC) nonlinearity is written 
in its dimensionless form as 
 

iqt + a1qxx + a2 
(jq

jq
j)
j
xx

 q + a3jqj + a4jqj
2
  q = i jqj

2m
q x  

+ i q + i 

 

q 2m 

x 

q + i  q 2mq  + (q )xx q2 = 0; (1) 

x j j  j j  x  jqj
2   

where the function q(x; t) is dependent that shows the com-

plex valued wave profile with i = 
p

 1. The dependent 
variables x and t are the variables of temporal and spatial 
correspondingly. Furthermore the parameter a1 and a2 are 
the group velocity dispersion and Boham potential for chiral 
solitions with quatum hall cause respectivly. The terms a3 

and a4 are QC non-linear together. The is signifies inter-
model dispersion, also accounts for self-steepening having 
short pulses while and are associated to non-linear dis-
persion. Lastly provides the relativistic effect in Plasmas. 
The parameter m is the full nonlinearity. 

 

3 Description of Method 

 

 
can be combine into a complex variable. The main steps 
of this technique are as:  

Step 1: Considering travelling wave transformation to 
alter independent variables into single variable as 
 

q(t; x) = V ( );   =  x +  t (3) 
 
where and are wave length and frequency. through 
utilizing transformation (3), the equation (2) is shrink into 
ODE as 
 

P (V; V 
0
; V 

00
; V 

000
; :::::) = 0; (4) 

where prime(0) shows derivative of V with respect to and  
P is polynomial of V ( ).  

Step 2: Consider the solution of equation (4) in the 
following form as: 
 

 N  
 X  

V ( ) = bi ( ( ))
i
 ; (5)  

i=  N 
 
where the real constants are bi and n. ( ) gratifies the 
giving below ansatz equation 

 

0
( ) = c0 + c1  ( ) + c2  

2
( ) + c3  

3
( ); (6) 

where the arbitrary constants are c0; c1; c2 and c3.  
Step 3: The possitive integer N is generally obtained via 

utilizing the homogeneous balancing principle on equation  
(4), and the coefficients b N ; b N+1; :::; b0; b1; :::; bN ; ; 
are parameters can be obtained.  

Step 4: putting equation (5) and equation (6) into 
equation (4) and putting the coefficients of dissimilar powers 
of i( ) to zero, gives way a system of algebraic equations. 
Mathematica software is utilized to solve this system of 
equations, then the solution of parameters can be obtained.  

Step 5: substituting the parameters value achieving in 
previous step into equation (5) then solutions of equation 
(4) can be attained. 

 

4 Application of description 
method to resonant NLSE with 
quardatic-cubic nonlinearity 

 
As the equation (1) is complex, so we suppose the 

solution in the form traveling wave of equation (1) as 
 

q(x; t) = V ( )e
i
 ;   = kx +  t + ; (7) 

 
In this part, we will describe the algorithm of modi-

fied F-expantion method for finding the exact solutions of 
NLEEs. In generally, assume NLESE having independent 
variable x and t as 
 

F (q; qt; qx; qxx; qxxx; ::::::::) = 0; (2) 
 
where the function q(x; t) is unknown and polynomial func-
tion is F having some specified functions or variables, which 
have linear and non-linear of highest order derivative terms 
of q(x; t) and be able to reduce into a polynomial function via 
using transformation in which the independent variables 

 
where the amplitude component of the wave profiles is V 
( ), phase factor is and k; ; symbolize the solitons 
frequency, the phase constant, the wave number 
respectively. Putting equation (7) into equation (1) and 
splitting into parts, give way as 
 

(a1  
2
 + a2  

2    2
  )V 

00
 + (k  + a1k

2
+ k

2
  )V 

(8) + a3V 
2
 + a4V 

3
 + (k  + k )V 

1+2m
 = 0: 

(  +  + 2m  + 2m ) V 
2m

   2a1k  + 

(9) 2 k= 0: 
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Substitute equation (9) into equation (8), we have  

a1  
2
 + a2  

2  2
   V 

00
 + V  a1k

2
+ k  +  k

2 

 2a1k+ 2k   +  

+ (k  + k ) 
 

 +   + 2m   + 2m 
+ a3V 

2
 + a4V 

3
 = 0: (10)   

Utilizing homogeneous balancing principle on equation (10) 
and consider the solution of equation (10) is in the form as  

V ( ) = 
b

 2 + 
b

 1 + b0 + b1  ( ) + b2  
2
( ):   (11) 

 2
( )  ( )   

Substituting equation (11) together with equation (6) into 
equation (10) and taking the coefficients of dis-similar 
powers of i( ) to zero, we attained a algebraic system of 
Equations in parameters b 2; b 1; b0; b1; b2; c0; c1; c2; 

c3; k; ; !; ; m and . Mathematica 9.0.1 is utilized to solve 
this algebraic system. The following cases of solutions 
are achieved as 
 

Case 1: c0 = c3 = 0, 
p   

= 2a3 9a4 a1k
2
(3 + 3 + 2 m + 2m ) + k(3k ( + ) + 2m( 

+ )( + k )) ( + + 2 m + 2m )) 
2a

2
3(  + + 2 m + 2m ) = (27a4k( 

p  
 q              3  a4c12 (  a1    a2 +  ) 

                     

          

2a3 
   

+ )  a4c1
2
 (    a1     2)  ;  = 

   
;               

     

p 
  

              3             

b 2 = b 1 = 0; b0 = 

 2a     

= 

2a3c2 

(12) 
  

 
; b1 

   

; b2 = 0:  3a4 3a4c1 

=  p 
 

a3 2a3
2 

(  +  + 2 m + 2m )  9a4  a1k
2   

2 (3 
+3  + 2                            

       m + 2m ) + k(3k (  +  ) + 2m(  +  )( 

+k ))    (  +  + 2 m + 2m )))) = (27a4k(    
 q      

 

      

 

           

               3  a4c12 (  a1   a2 +  ) 

                             p
2a3 

   

+ )  a4c1
2
 (    a1 

 
a2)  ;  = 

          
; 
 

               

    

2
p

3 2 : 
  

b = b   = b = 0; b   = 0; b  =   (13) 
                         a c    

2 

   

1 

  

2 

 

0 

     

1 

         

               3a4c1     
The following soliton solutions of equation (1) are ob-

tained from solution (12) as  

q11(x; t) = 

   (2a3)  

ei(kx+ t+ ); c1 > 0: (14) 3a4 c2e
c

1
(d+ )

1  

q12(x; t) = 

  2a3   

ei(kx+ t+ ); c1 < 0 (15) 3a4 c2e
c

1
(d+ )

 + 1  
More soliton solutions of equation (1) are obtained 

from solution (13) as 

q13(x; t) = 

2a3c2e
c

1
(d+ ) 

 

ei(kx+ t+ ); c1 > 0: (16) 3a4 c2e
c

1
(d+ )

1  

q14(x; t) = 

2a3c2e
c

1
(d+ )  

ei(kx+ t+ ); c1 < 0: (17) 3a4 c2e
c

1
(d+ )

 + 1  

 
 
 
 
 
 
 
 
 
 
 
Figure 1: Solitons are drawn in different forms of Case 1 solutions.  
 
 
 
 

Case 2: c1 = c3 = 0, 
 

=  a3  9a4  a1k
2
(3  + 3  + 2 m + 2m ) 

 
+k(3k (  +  ) + 2m(  +  )( + k )) (  +  

+2 m + 2m ))  2a3
2
(  +  + 2 m              

+2m ))) = 
  

p 
                        

; 27 2a4k(  +  )   a4c0c2 (a1 + a2     ) 
                

 a3
p  

p 
  

ia3
p    

 
  

                c0   c2   

b 2 = b 1 = 0; b0 = 
    

; b1 = 
         

; 
 

3a4 
 

3a4
p    

 c0  

b2 = 0;  =              a3             :       (18) 
p                              

      3  2a4c0c2 (a1 + a2     )   
               

a3 p 
        

ia3 p 
  

 
 

 
  

b 2 = b 1 = 0; b0 = 
c0 

; b1 = 
c2 

; 
  

3a4 
 

3a4
p  

 

  

 c0   

b2 = 0;  = p 
             a3                

; 
   

                           

  p                           
=  a3 9a4  a1k                             

   3  2     a4c0c2 (  a1     2 +  )   

+ ) +       2
(3  + 3  + 2 m + 2m ) + k(3k ( 

                   

(  +  + 2 m + 2m ))   2m(  +  )(  + k ))    

2a3
2
(  +  + 2 m + 2m )  =  27

p  

a4k( 
  

2   

+ )
p 

 

: 

             

(19) a4c0c2 (  a1     2 +  )               
The following solitary wave solutions of Eq.(1) are ob-  

tained from solution (18) as:       
 

 
         4    
  

a3  1 + i tan 
 

p 
 

(d +  ) 
   

q21(x; t) = 
  c0c2  

ei(kx+ t+ ;       3a        
                

   
3  

        
c

0
c

2 > 0: (20) 
q22(x; t) =  

p 
 3a4   e(i(kx+ t+ ; 

  ia  tan 
c

0
c

2 (d +  )  i    

             c0c2 < 0: (21) 
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More solutins in the form of solitary wave solutions are 
constructed of equation (1) from solution (19) as 
 

 
 ia 

 
tan 

    
p 

 
(d +  ) 

 
+ i 

 
   c  c   

q23(x; t) =  3 p 
0
3a4

2 
   e(i(kx+ t+ ; 

    

 p 

    

 

c0c2 > 0: (22) 

q
24 (x; t) = 3 

0
3a4

2  e(i(kx+ t+ ; 
  ia  tan   c  p c (d +  )  + i   

             c0c2 < 0: (23)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Solitary wave and soliton in various forms are plotted 

of Case 2 solutions. 

 

Case 3: c3 = 0,                           
                   

3c1  
p   

p 
  

+ 2a3 ; 
  

b 
2 

= b 
1 

= 0; b 
0 

= 
 

2a4 a1   a2 +   
               

                         6a4     
   

  

p 
 

c2
p       

 ; c 
 

= 9a4  
2
c1

2
 (    a1   a2)  2a3

2     

2 
  

b 

1 

= 

 

a1   a2 

0 

; 
        

 

p 
 

 

             

36a4  
2
c2 (    a1   a2) 

  

        a4                
b2 = 0;  =    2a3

2
(  +  + 2 m + 2m )  9a4  a1k

2 
(3  + 3  

+2 m + 2                         

           m ) + k(3k (  +  ) + 2m(  +  )(  + k ))   

 (  +  + 2 m + 2m )))) = (9a4k(  +  )) : (24)   

               
3p 

  
c1

p  
2a3 ; 

    
b 

2 
= b 

1 
= 0; b 

0 
= 2a4 a1   a2     

                

   

p 

                   6a4     
  

= 

 

c2
p   

; c 

  

 
9a4  

2
c1

2
 (    a1   a2)  2a3

2   
  

2 
    

b  a1   a2  = ;  

1 

     

p 
 

0 

  

          a4                36a4  
2
c2 (    a1   a2)   

b2 = 0;  =    2a3
2
(  +  + 2 m + 2m )  9a4  a1k

2 
(3  + 3  

 +2 m + 2                         

           m ) + k(3k (  +  ) + 2m(  +  )(  + k ))   

 (  +  + 2 m + 2m )))) = (9a4k(  +  )) : (25)    

 

 
We achieve the following exact solution of equation (1) 

from solutions (24) and (25) as 
 

q31( ) = 

 

p 

    

q 

      
     

4c0c2   c1
2
 tan ( 

 

3 2a4(    a1   a2)  
  p     (d +  )

!
  2c1

! 
 2a3

! 
= (6a4) e

i
 ; 

 4c0 22 1 

     c  c
2 

             

           4c c 
2 
 > c

2
:       (26) 

             0  1        

q32( ) = 0   4c0c2   c1
2p

   a1   a2 tan 
p 
   (d +  ) 

 2  1 

                   

4c0c2 
 

c
2  

 

B 
p               

     

p 2
p

a4 

  

            
 B                        

 

@ 

   

 

                  

(27) 

                      

    e
i(kx+

 
t+ )

; 4c0c2 > c1
2
:       

  3a4        

   a3                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Different shapes of solitary wave solutions are drawn of  

Case 3.       

Case 4: c0 = c2 = 0,       

b 2 = b 1 = 0; b0 = 

2a3 

; b1 = 0; 

  
3a4   

 2a3c3    ia3  

b2 = 

 

;  = 

  
 

; 3a4c1 3
p  

2a4c1
2
 (a1 + a2     )  

=  ia3  9a4  a1k
2
(3  + 3  + 2 m + 2m )  

+k(3k (  +  ) + 2m(  +  )( + k )) (  +  

+2 m + 2m ))  2a 3
2
(  + 

+ 2 m + 2m ) 
  

 

   

2 

= 27 p 2a4k(  +  )
q

 a4c1 (  a1   a2 +  )  :   (28)  
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b 2 = b 1 = 0; b0 = 
2a3c3n2

 ; b1 = 0; 
3a4c1  

b2 = 

2a3c3 

;  = 

 ia3 

; 3a4c1 3p 
 

2a4c1
2
 (a1 +  2     ) 

=  ia3  9a4  a1k
2
(3  + 3  + 2 m + 2m )  

+k(3k ( + ) + 2m( + )( + k )) ( + +2 m + 2m )) 

2a
2
3( + + 2 m + 2m ) 

 

 
Putting equation (34) into equation (1) and linearizing, 
yield 

 @ 
4i 

@ @2 

+ 4P ((2a4)  + a4   ) = 0; 4i 
  

+ 4a1 
 

@t @x @x
2 

    (35) 
where represents complex conjugate. Assume the 
solution of equation (35) in the form as 

                                    

(x; t) =  1ei( x  !t) +  2e i( x  !t); 
  

(36) 
                                      

=  27 
p

2a4k(  +  )
q

 a4c1
2
 (  a1     2 +  )  : (29) 

     
where the normalized wave number and frequency of pertur- 

The following solutions in the form of solitary wave are bation are  and !. The dispersion relation (DR) ! = !( ) 
constructed from solution (28) of equation (1) as  of a constant coefficient linear equation decides how time 
           3=2                   oscillations ei x are associated to spatial oscillations ei!t of 
          c3e

2c
1                   wave number  . Putting equation (36) in equation (35), we 

     

2a3 c1(c3e2c1    1) 
 

1  

     

q41( ) =  e
i
 ; c1 > 0: (30) obtained the following DR as          

                       

          3a4                                          
          

2( p 
   

+1)c 
            ! =  (a1  

2  3a4P +  P ) (a1  
2   a4P +  P )           c                 

              1     1              

 

p 
 

 

      

 

     

  

2a3 
  c3e       

 

1  

              

(37)     c1(e
2c

1  
 

c3)                
q42( ) =                   e

i
 ; c1 < 0: (31) The relation (37) discloses the steady state stability       

3a4 
              

                             depends on the self phase modulation, wave number 
In the similar way, more exact solutions of equation (1) are ! and stimulated Raman scattering.  If  the expres- 

also obtained from solution (29) as          sion  a1  
2
   3a4P +  P   a1  

2
   a4P +  P  0, its 

                3=2              mean that the  is  real  for all  ,  then  the steady 
          2a3c3e

2c
1                  !             

q43(x; t) =                  
ei(kx+ t+ ): (32) state is stable against small perturbations.  Otherwise 

               2c1  

      3a4c1   3a4c1c3e           the steady state becomes unstable if the  expression 
        

2a3c3e
2(p  

+1)c1 

      

a1  
2
   3a4 P +  P 

 

a1  
2  

a4P +  P ) 
 

< 0. One         c1    i(kx+ t+ )      
                                 can easily see that,  for  the occurrence  of MI when 

q44(x; t) = 3a4c1 (e
2c

1  c3) 
e 

  : (33)  2 3a4P +  P    2          this 
                             a1   a1  

a
4
P

 
+

  
P   <

 
0

. Underf(k) 

circumstance, the growth rate of MI gain spectrum 
could be articulated as  

 
h( ) = 2Im( )  

=2
p

(a1  
2
 3a4P +  P ) (a1  

2
 a4P +  P ):  (38)  

 
 
 
 

 
Figure 4: Solitary wave solution in different forms is drawn of 

Case 4 solution. 
 
 
 

5 Modulation Instability 
 

Several higher order nonlinear models 
demonstrating an instability that guides to investigate the 
steady state mod-ulation as a result of the interrelation 
among the nonlinear and dispersive effects. To attain the 
MI of model (1) through utilizing the standard linear 
stability analysis [5–7, 28] to study how weak and time-
dependent perturbations create on the promulgation 
distance. The solution in study state form of NLSE as 

q(x; t) = P 2 +  (x; t)  e
i
 
(t)

;   (t) = P  t;    (34) 
  1  

 
where optical power P is normalized. The perturba-tion (x; 
t) is investigate by using linear stability analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The graph of dispersion relation ! = !(  ). 
 
 

 

6 Results and Discussion 
 

The achieved exact solutions via the proposed scheme 
are dissimilar from the constructed solutions of different re-
searchers through existing techniques due to the supposed 
equation (6) of the proposed scheme is different from the 
existing schemes. Various special form of solutions such as 
trigonometric, hyperbolic trigonometric and rational func-tions 
are achieved of equation (6) by grants special values to 
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parameters. The researchers in [45] employed semi-
inverse variational principle to obtain resonant soliton 
solutions of equation (1). So, our achieved analytical 
solutions are novel and have not constructed in literature.  

The Figure 1 illustrates exact Solitons in different 
forms are pinched of Case 1. The figure(1-A) and (1-C) 
demon-strate the bright soliton and periodic aoliton of 
solutions  
(14) and (15) respectively, and the figure(1-B) and 
figure(1-D) evaluate of same solutions in one-dimension 
at same values of parameters.  

The Figure 2 indicates Solitary wave and solitions in 
differ-ent forms are plotted drawn. The figure(2-A) and 
figure(2-C) illustrates the solitary wave and soliton of 
solutions (20) and (21) respectively, and the Figure(2-B) 
and Figure(2-D) evaluate of the same solutions in one-
dimension at same values of parameters. 

The Figure 3 indicates exact Solitary waves in different 
shapes are drawn. The figure(3-A) and figure(3-C) illus-
trates the periodic solitary waves of solutions (26) and 
(27) respectively, and the Figure(3-B) and Figure(3-D) 
evaluate of the same solutions in one-dimension at same 
values of parameter.  

The Figure 4 evaluate Solitary wave in various shapes 
are plotted. The Figures(4-A) show solitary wave of solu-
tion (31) and the Figure(4-B) signify same solution in 
one-dimension at same values of parameter. The DR ! = 
!( ) between frequency ! and wave number of perturbation 
is presented in Figure 5. 
 
 

7 Conclusion 
 

We have been effectively utilized the modified ex-
tended simple equation technique to get optical soliton and 
solitary wave solution to the resonant NLSE with quadratic-
cubic nonlinearity that have key application in engineering, 
physics and applied Mathematics. The stability of model is 
inspected by employing the MI analysis, which shows that 
the achieved exact solutions are stable. we have also shown 
the some obtained solutions graphically, which facili-tates to 
recognize the physical phenomena of this nonlinear model. 
All the achieved results are novel and does not exist in 
literature also. The power of current method shows it can be 
applied in future to solve many problems arises in 
engineering and applied physics. 

 

 
Schrödinger–Maxwell–Bloch system in the optical-fiber 
communication, Nonlinear Dyn. 78, 2309-2318 (2014). 

 
[4] Z.Z. Lan, Y.T. Gao, J.W. Yang, C.Q. Su, B.Q. Mao, 

Soli-tons, Bäcklund transformation and Lax pair for a 
(2+1)-dimensional Broer-Kaup-Kupershmidt system 
in the shallow water of uniform depth, Commun. 
Nonlinear Sci. Numer. Simulat. 44, 360-372 (2017). 

 
[5] G.P. Agrawal, Nonlinear Fiber Optics, 5th ed., New 

York (2013). 
 
[6] N. Nasreen, D. Lu, M. Arshad, Optical soliton 

solutions of nonlinear Schrödinger equation with 
second order spatiotemporal dispersion and its 
modulation instability, Optik 161 221-229 (2018). 

 
[7] M. Arshad, A.R. Seadawy, Dianchen Lu, Modulation 

stability and optical soliton solutions of nonlinear 
Schrödinger equation with higher order dispersion and 
€ nonlinear terms and its applications, Superlattices 

and Microstructures 112, 422-434 (2017). 
 
[8] G. B. Whitham, Linear and Nonlinear Waves ,John 

Wiley, New York, (1974). 
 
[9] Z.Z. Lan, Y.T. Gao, J.W. Yang, C.Q. Su, C. Zhao, Z. 

Gao, Solitons and Bäcklund transformation for a 
generalized (3+1)-dimensional variable-coefficient B-
type Kadomt-sev–Petviashvili equation in fluid 
dynamics, Appl. Math. Lett. 60, 96-100 (2016). 

 
[10] M. Arshad, A.R. Seadawy, D. Lu, Exact bright-dark 

solitary wave solutions of the higher-order cubic–

quintic nonlinear Schrödinger equation and its 
stability, Optik, 128, 40-49 (2017). 

 
[11] D. Lu, B. Hong, L.-X. Tian, Explicit and exact solutions 

to the variable coefficient combined KdV equation with 
forced term, Acta Physica Sinica, 55, 5617-5622 (2006). 

 
[12] J. Satsuma, Higher Conservation laws for the Korteweg-

de Vries equation through Backlund transformation, Prog. 

Theor. Phys. 52 (1974) 1396-1397. 
 
[13] J. Denschlag, J.E. Simsarian, D.L. Feder, Charles 

W. Clark, L.A. Collins, J. Cubizolles, L. Deng, E.W. 
Ha-gley, K. Helmerson, W.P. Reinhardt, S.L. Rolston, 
B.I. Schneider, W.D. Phillips, Generating solitons by 
phase engineering of a bose-einstein condensate, 
Science 287, 97-101 (2000). 

 
References 
 
[1] V.E. Zakharov, Collapse of Langmuir waves, Sov. 

Phys. JETP 35, 908–914 (1972). 
 
[2] C. Hamner, J.J. Chang, P. Engels, M.A. Hoefer, 

Gen-eration of Dark-Bright Soliton Trains in 
Superfluid-Superfluid Counterflow, Phys. Rev. Lett. 
106, 065302, (2011). 

 
[3] D.W. Zuo, Y.T. Gao, Y.J. Feng, L. Xue, Rogue-wave 

interaction for a higher-order nonlinear 

 
[14] Y.S. Kivshar, G.P. Agrawal, Spatial Solitons, 

Academic Press, Amsterdam(2003). 
 
[15] A.W. Snyder, D.J. Mitchell, Accessible Solitons, 

Science 276, 1538-1541 (1997). 
 
[16] X. Zhu, Z. Shi, H. Li, Nonlocal gray solitons in parity-

time-symmetric potentials with spatially modulated non-
linearity, Opt. Commun. 355, 516-522 (2015). 

 
[17] Q. Wang, J.Z. Li, Vector Laguerre–Gaussian soliton 

in strong nonlocal nonlinear media, Opt. Commun. 
354, 174-183 (2015). 

 

86



 

 
 

 
International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE 

Copyright © Institute of Research Engineers and Doctors 
Volume 8 : Issue 1 -  [ISSN : 2319-7498] - Publication Date: 27 Dec, 2019 

 
 

 

 
[18] Z.J. Yang, Z.P. Dai, S.M. Zhang, Z.G. Pang, 

Dynamics of dipole breathers in nonlinear media with 
a spatial exponential-decay nonlocality, Nonlinear 
Dyn. 80, 1081-1090 (2015). 

 
[19] Z. Yang, X. Ma, D. Lu, Y. Zheng, X. Gao, W. Hu, Relation 

between surface solitons and bulk solitons in nonlocal 

nonlinear media, Opt. Express 19, 4890-4901 (2011). 
 
[20] M. Shen, H. Zhao, B. Li, J. Shi, Q. Wang, R.K. Lee, 

Stabilization of vortex solitons by combining compet-
ing cubic-quintic nonlinearities with a finite degree of 
nonlocality, Phys. Rev. A 89, 025804 (2014). 

 
[21] S.L. Xu, M.R. Belić, Three-dimensional Hermite-Bessel 

solitons in strongly nonlocal media with variable poten-tial 

coefficients, Opt. Commun. 313, 62-69 (2014). 
 
[22] Q. Shou, M. Wu, Q. Guo, Large phase shift of 

(1+1)-dimensional nonlocal spatial solitons in lead 
glass, Opt. Commun. 338, 133-137 (2015). 

 
[23] Y.V. Izdebskaya, A.S. Desyatnikov, Y.S. Kivshar, Self-

Induced Mode Transformation in Nonlocal Nonlinear 
Media, Phys. Rev. Lett. 111, 123902 (2013). 

 
[24] Q. Kong, Q. Wang, O. Bang, W. Krolikowski, 

Analytical theory for the dark-soliton interaction in 
nonlocal non-linear materials with an arbitrary degree 
of nonlocality, Phys. Rev. A 82, 013826 (2010). 

 
[25] C. Rotschild, B. Alfassi, O. Cohen, M. Segev, Long-

range interactions between optical solitons, Nat. 
Phys. 2, 769-774 (2006). 

 
[26] M.R. Rashidian-Vaziri, F. Hajiesmaeilbaigi, M.H. 

Maleki, New ducting model for analyzing the 
Gaussian beam propagation in nonlinear Kerr media 
and its ap-plication to spatial self-phase modulations, 
J. Opt. 15, 035202 (2013). 

 
[27] A.R. Seadawy, Nonlinear wave solutions of the three-

dimensional Zakharov–Kuznetsov–Burgers equation in 
dusty plasma, Physica A 439, 124-131 (2015). 

 
[28] A.R. Seadawy, M. Arshad, D. Lu, Stability analysis 

of new exact traveling-wave solutions of new coupled 
KdV and new coupled Zakharov–Kuznetsov systems, 
Eur. Phys. J. Plus 132, 162 (2017). 

 
[29] N.A. Kudryashov, M.B. Soukharev, M.V. Demina, El-

liptic traveling waves of the Olver equation, Commun. 
Nonlinear Sci. Numer. Simul. 17, 4104–4114 (2012). 

 
[30] A.H. Khater, M.A. Helal, A.R. Seadawy, General soli-

ton solutions of n-dimensional nonlinear Schrodinger 
equation, IL Nuovo Cimento 115B, 1303–1312 (2000). 

 
[31] D.Lu, A.R. Seadawy, M. Arshad, Application of 

simple equation method on unstable nonlinear 
Schrodinger equations, Optik 140, 136–144 (2017). 

 
[32] Q. Zhao, L. Wu, F. Lin, Darboux transformation and 

explicit solutions to the generalized TD equation, 
Appl. Math. Lett., 67, 1-6 (2017). 

 

 
[33] M. Kumar, R. Kumar, Soliton solutions of KD 

system using similarity transformations method, 
Comput. Math. Appl., 73, 701-712 (2017). 

 
[34] A.M. Syam Kumar, J.P. Prasanth, V.M. BannurQuark-

gluon plasma phase transition using cluster expansion 
method, Physica A, 432, 71-75 (2015). 

 
[35] L. Zhang, Y. Lin, Y. Liu, New solitary wave solutions 

for two nonlinear evolution equations, Comput. Math. 
Appl., 67,1595-1606 (2014). 

 
[36] K. Khan, M. A. Akbar, M.M. Rashidi and I. Zaman-

pour, Exact Traveling Wave Solutions of an 
Autonomous System via the Enhanced (G0=G)-
Expansion Method, Waves in Random and Complex 
Media, 25, 644-655 (2015). 

 
[37] M. Javidi, A. Golbabai, Numerical studies on 

nonlinear Schrödinger equations by spectral 
collocation method with preconditioning, J. Math. 
Anal. Appl., 333, 1119-1127 (2007). 

 
[38] J. Zhai, B. Zheng,On the local well-posedness for the 

nonlinear Schrödinger equation with spatial variable 
coecient, J. Math. Anal. Appl., 445,81-96 (2017). 

 
[39] A.R. Seadawy, D. Lu, Ion acoustic solitary wave so-

lutions of three-dimensional nonlinear extended Za-
kharov–Kuznetsov dynamical equation in a magne-
tized two-ion-temperature dusty plasma, Results 
Phys. 6,590–593 (2016). 

 
[40] M. Mirzazadeh, M. Ekici, Q. Zhou, A. Biswas, Exact 

solitons to generalized resonant dispersive nonlinear 
Schrödingers equation with power law nonlinearity, 
Op-tik, 130,178-183 (2017). 

 
[41] M. Saha, A.K. Sarma,Solitary wave solutions and 

mod-ulation instability analysis of the nonlinear 
Schrödinger equation with higher order dispersion 
and nonlinear terms, Commun. Nonlinear Sci. 
Numer. Simul., 18,2420-2425 (2013). 

 
[42] M. Arshad, A.R. Seadawy, Dianchen Lu, Optical 

soli-ton solutions of the generalized higher-order 
nonlin-ear Schrödinger equations and their 
applications, Opt Quant Electron,49: 421 (2017). 

 
[43] ] Shou-Fu Tian, Initial boundary value problems for 

the general coupled nonlinear Schrödinger equation 
on the interval via the Fokas method, J. Differ. 
Equations 262,506 (2017). 

 
[44] M.J. Potasek, Modulation instability in an extended 

nonlinear Schrödinger equation, Opt. Lett. 12,921–

923 (2017). 
 
[45] A. Biswas, M.Z. Ullah, Q. Zhou, S.P. Moshokoa, 

H.Triki, M. Belic, Resonant optical solitons with 
quadratic-cubic nonlinearity by semi-inverse 
variational principle, Optik 145,18-21 (2017). 

 

87


