Simulation of electron beam welding of 316L stainless steel thin plates

[Elena Koleva, Lilyana Koleva, Georgi Mladenov, Tsvetomira Tsonevska, Dmitriy Trushnikov]

Abstract — In this paper the simulation of electron beam welding of thin 316L stainless steel thin plates by a moving linear heat source is considered. Regression models for the molten pool geometry characteristics, depending on the electron beam power and the welding velocity are estimated. The thermal histories and the cooling rates defining the microstructure and the distribution of the mechanical properties of the welded samples are also estimated. The influences of the initial temperature $T_o$ and the welded sample thickness on the temperature distributions are demonstrated.

Keywords — electron beam welding, stainless steel 316L, heat model, linear heat source

I. Introduction

The electron beam welding has been developed over the years into a flexible and economic manufacturing tool [1] for implementation in numerous industries such as automotive, military, aviation and others. The advantages of the process are

1. The austenitic stainless steel 316/316L is a chromium-nickel-molybdenum alloy with low carbon content, developed to provide improved corrosion resistance in moderately corrosive environments. It has excellent mechanical properties and very good weldability and it is a preferred alloy for various architectural, industrial and transport applications. In [4] an experimental investigation of the influence of electron beam irradiation on the mechanical properties of austenitic stainless steel 316L (SS 316L) 0.5 mm thin samples with different electron beam powers and different irradiation duration is presented. Analogue heating impact is observed during the process of electron beam welding of thin plates in the neighboring regions of the molten pool. This heating is connected with a change in the $0.2\%$ proof strength $R_{p0.2}$, the tensile strength $R_m$ and the percentage elongation after fracture $A_{30}$. On the other hand, the quality of the welded joint depends on the temperature gradients $G$ at the solid-liquid interface and the local solidification growth rate, $R$ are the most important parameters that affect the solidification structure [6]. The ratio of the parameters, $G/R$, affects the morphology of the solidification structure and GR, the cooling rate, affects the scale of the microstructure. The shape of the fusion zone and the temperature field affect both $G$ and $R$, taking into account

Elena Koleva
Institute of Electronics, Bulgarian Academy of Sciences, 72, Tzarigradsko shose, Sofia 1784
University of Chemical Technology and Metallurgy, 8, Kliment Ohridski blvd., Sofia 1756
Bulgaria

Lilyana Koleva
University of Chemical Technology and Metallurgy, 8, Kliment Ohridski blvd., Sofia 1756
Bulgaria

Georgi Mladenov
Institute of Electronics, Bulgarian Academy of Sciences, 72, Tzarigradsko shose, Sofia 1784
Bulgaria

Tsvetomira Tsonevska
Institute of Electronics, Bulgarian Academy of Sciences, 72, Tzarigradsko shose, Sofia 1784
Bulgaria

Dmitriy Trushnikov
Perm National Research Polytechnic University, Perm, Komsomolski Prospekt str.
Russian Federation
that the peak temperature in the molten pool can be several hundred degrees above the liquid us temperature of the material. The rapid heating and cooling leads to sharp peaks in time temperature plots that result in high heating and cooling rates. Depending on the material and the spot location the cooling rates may vary significantly. Also, at very high scanning speeds, the molten pool tends to elongate and can become unstable.

In this paper the simulation of electron beam welding of thin 316L stainless steel 0.5 mm thin plates by a moving linear heat source, using Rosenthal's [7] solution, is considered. Regression models for the molten pool geometry characteristics, depending on the electron beam power and the welding velocity are estimated. The influence of the initial temperature $T_0$ and the welded sample thickness on the temperature distribution during electron beam welding is also demonstrated. The cooling rates $V_c$ are also calculated.

II. Experimental conditions and simulation results

The solution of the thermal balance steady-state model involving a linear, uniformly distributed heat source in the moving with the beam respectively to sample coordinate system at heating a sheet of thickness $h$ in these conditions assuming no phase changes in the sample during treatment is [8]:

$$T(r, x) = \frac{p}{2\pi \lambda h} \cdot e^{-\frac{Vx}{2a}} \cdot K_0\left(\frac{Vr}{2a}\right) + T_0,$$

where $r$ is radius-vector from the heat source to the studied point, $x$ and $y$ are the coordinates in a moving together with the heat source coordinate system, ($x$ is the axis coinciding with the direction of electron beam movement, $y$ is the distance from this axis), $\lambda$ and $a$ are the sample thermal conductivity and diffusivity ($a = \lambda/C_\rho$, where $C_\rho$ is the specific heat and $\rho$ is the sample density), $K_0(Vr/2a)$ is the modified Bessel function of second kind of order zero, $P$ is the electron beam absorbed energy input (beam energy $P_b$ after correction for energy losses by back scattered and secondary electrons), $V$ is the welding speed, $T_0$ is the initial sample temperature.

The electron beam welding is performed for 0.5 mm thin stainless steel 316L plates with dimensions 60 mm $\times$ 100 mm. Since the plates are thin, the process is performed at higher velocities to avoid the appearance of big molten pools. The chosen regions for the variation of the process parameters are presented in Table 1, where $z_1$ is power of the electron beam and $z_2$ is the welding velocity.

The coded designations of the process parameters are given in Table 1. The transformation from natural ($z_i$) to coded ($x_i$) in the range from -1 to 1 and dimensionless values of the process parameters is done by using the formula:

$$x_i = \frac{2z_i - (z_{\text{max},i} + z_{\text{min},i})}{z_{\text{max},i} - z_{\text{min},i}}$$ (2)

TABLE I. PROCESS PARAMETER VARIATION REGIONS

<table>
<thead>
<tr>
<th>Factor</th>
<th>Dimension</th>
<th>Coded</th>
<th>Lower level ($z_{\text{min}}$)</th>
<th>Upper level ($z_{\text{max}}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_1$</td>
<td>kW</td>
<td>$x_1$</td>
<td>0.60</td>
<td>0.90</td>
</tr>
<tr>
<td>$z_2$</td>
<td>mm/sec</td>
<td>$x_2$</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

In order to investigate the change in the temperature distributions in the samples of thin metal specimens of 316L stainless steel [4], different sets of the process parameters electron beam power ($z_1$) and welding velocity ($z_2$) are used. For the simulated experiments, full factorial design with 3 levels of the process parameters is chosen and presented in coded and natural values in Table 2. The initial temperature $T_0$ for all experiments is 20 °C.

TABLE II. EXPERIMENTAL DESIGN AND OBTAINED RESULTS FOR THE GEOMETRIC CHARACTERISTICS OF THE MELTED ZONE DURING EBW PROCESS

<table>
<thead>
<tr>
<th>№</th>
<th>Coded values</th>
<th>Natural values</th>
<th>Welding pool geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1$</td>
<td>$y_1$</td>
<td>$z_1$</td>
<td>$z_2$</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0.60</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0.90</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0.90</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>0</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0.90</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-1</td>
<td>0.75</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Figure 1. Simulation of electron beam welding of SS 316L in transverse cross-section – y, z – plane and x, y – plane of with: a) electron beam power of 600 W, welding speed 15 mm/sec, b) electron beam power of 600 W, welding speed 25 mm/sec.
The obtained results for the geometrical characteristics of the molten pool: \(y_1\) – molten pool length (mm) along the axis \(x\), \(y_2\) – molten pool width (mm) along the axis \(y\) and \(y_3\) – molten pool transverse cross-section area (mm\(^2\)) in y-z plane are presented in Table II. The ratio molten pool length/width is also calculated. The melting temperature of 316L steel is \(T_m = 1400\, ^\circ C\) \((T_s = 1360\, ^\circ C, T_L = 1410\, ^\circ C)\) [9]. The thermo-physical properties of stainless steel 316L samples: thermal conductivity \(\lambda\), thermal diffusivity \(\alpha\), the specific heat \(C_p\) and density \(\rho\) are temperature-dependent and models for these properties for different temperature regions are estimated in [10].

For verification of the estimated models, another experiment is performed under the same initial conditions and input parameters: plate thickness - 0.5 mm; initial sample temperature \(T_0\) - 20 \(^\circ C\); power of the electron beam \(-z_1 = 0.8625\, kW\) \((x_1 = 0.75)\) and welding velocity \(-z_2 = 16.25\, mm/sec\) \((x_2 = -0.75)\). The results of the performed verification experiment are shown in Table 4.

### III. Modelling of the geometrical characteristics of the molten zone

The experimental results for the molten pool geometry in Table 2 are used for the estimation of regression models giving the relationship of the geometrical characteristics and the process parameters electron beam power \(x_1\) and the welding velocity \(x_2\) (coded values). They are given in Table 3, together with the values of the corresponding determination coefficients \(R^2\) (the square of the multiple correlation coefficient \(R\)) and the adjusted determination coefficients \(R^2_{adj}\). These coefficients are tested for significance and their values are measures for the accuracy of the estimated models. From Table 3 it can be seen that all regression models are very good, the values of their determination coefficients \(R^2\) and the adjusted determination coefficients \(R^2_{adj}\) are significant and consequently they are good for prediction and optimization of the considered geometrical characteristics.

<table>
<thead>
<tr>
<th>Regression models</th>
<th>(R^2), %</th>
<th>(R^2_{adj}), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>21.833 + 8.767(x_1) – 5.833(x_2) + 1.467(x_2^2) – 2.250(x_1x_2)</td>
<td>99.72</td>
</tr>
<tr>
<td>(y_2)</td>
<td>3.8967 + 0.8466(x_1) – 1.0500(x_2) + 0.2933(x_2^2) – 0.2150(x_1x_2)</td>
<td>99.91</td>
</tr>
<tr>
<td>(y_3)</td>
<td>1.96667 + 0.40500(x_1) – 0.52333(x_2) + 0.13(x_2^2) – 0.10750(x_1x_2) + 0.02750(x_1^2)</td>
<td>99.99</td>
</tr>
</tbody>
</table>

### TABLE IV. VERIFICATION RESULTS

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Regression models</th>
<th>(y_1)</th>
<th>(y_2)</th>
<th>(y_3)</th>
<th>(y_1)</th>
<th>(y_2)</th>
<th>(y_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td>Regression models</td>
<td>(y_1)</td>
<td>(y_2)</td>
<td>(y_3)</td>
<td>(y_1)</td>
<td>(y_2)</td>
<td>(y_3)</td>
</tr>
<tr>
<td>34.5</td>
<td>5.58</td>
<td>2.79</td>
<td>34.88</td>
<td>5.61</td>
<td>2.81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Figs. 3-5 contour plots of the dependence molten pool width - \(y_1\) (mm), molten pool length – \(y_2\) (mm) and the molten pool transverse cross-section area – \(y_3\) (mm\(^2\)) on the variation of the electron beam welding process parameters – electron beam power \((z_1)\) and the welding velocity \((z_2)\) are presented.

- Figure 2. Contour plot of the molten pool width - \(y_1\) (mm), depending on electron beam power \((z_1)\) and velocity \((z_2)\).

- Figure 3. Contour plot of the molten pool length – \(y_2\) (mm), depending on electron beam power \((z_1)\) and velocity \((z_2)\).

- Figure 4. Contour plot of the molten pool transverse cross-section area – \(y_3\) (mm\(^2\)), depending on electron beam power \((z_1)\) and velocity \((z_2)\).

It can be seen how the increase of electron beam power increases the molten pool dimensions and on the opposite the increase in welding velocity results in molten pools with reduced dimensions.
IV. Influence of other parameters

The cooling rates \( V_c = \frac{dT}{dt} \) (where \( T \) is the temperature, \( t \) is the time) can be approximately estimated from the calculated thermal cycle. The cooling rates are measured or calculated between the liquidus and the solidus temperatures \( (V_{c, L}, V_{c, S}) \) of the material at a location directly below the central axis of the heat source. For electron beam welding the values are typically in the range \( 10^2 \)–\( 10^4 \) K/s.

The cooling rates from the liquidus to solidus temperature are used for determining the features of solidification microstructure such as cells and dendrites [11]. The thermal history can be important for determining the extent of solid-state transformations, which vary significantly from one material to another.

Fig. 5 shows the temperature history in a point below the central axis of the electron beam heat source at welding with electron beam power 600 W and welding velocity 15 mm/sec (Experiment 1).

The most important temperature range for steels is the 800–500 °C \( (V_{c, 800-500}) \) where the cooling rate significantly affects the microstructure and the mechanical properties [12].

The cooling rates depend on the ratio of the electron beam power (energy input) and the welding velocity \( (z_1/z_2) \). In [12] it is shown, that the decrease of this ratio leads to decrease of the microhardness and to an increase of the ferrite percentage of the welded samples. The calculated dependence of the cooling rate \( V_{c, 800-500} \) on the ratio of the input power/welding velocity for the performed experiments (Table 2) is presented in Fig. 6.

The initial temperature \( T_0 \) also influences the temperature distributions at electron beam welding. In Fig. 7 are presented the results from the simulations for the dimensions of the molten pool length (Fig. 7a) and molten pool width (Fig. 7b) for different values of the initial temperature \( T_0 \) and two welding velocities 15 mm/sec and 25 mm/sec. The simulated temperature distribution for electron beam power 600 W and welding velocity 15 mm/sec and initial temperature \( T_0 = 200 \) °C is presented in Fig. 8a. There the molten pool length is 24.1 mm, the molten pool width is 4.81 mm and the molten pool transverse cross-section area is 2.4 mm².
The influence of the sample thickness on the geometry of the molten pool is demonstrated on Fig. 8b. There assuming again moving linear heat source the experiment was performed with plates 3 mm thick, electron beam power of 600 W, welding speed 15 mm/sec and initial temperature 20 °C. There the molten pool length is 1.76 mm, the molten pool width is 1.4 mm and the molten pool transverse cross-section area is 4.2 mm². The dimensions of the plate are again 60 mm × 100 mm, but on the figure is presented reduced part of the surface (6 mm × 10 mm).

![Figure 8. Simulation of electron beam welding of SS 316L in transverse cross-section – y,z – plane and x,y – plane of with: a) electron beam power of 600 W, welding speed 15 mm/sec, plate thickness 0.5 mm, initial temperature 200 °C, b) electron beam power of 600 W, welding speed 15 mm/sec, plate thickness 3 mm, initial temperature 20 °C.](image)

**v. Conclusion**

In this paper, the simulation of electron beam welding of thin 316L stainless steel 0.5 mm thin plates by a moving linear heat source is considered. Full factorial design is used for investigation of the influence of the process parameters the electron beam power and the welding velocity on the geometrical characteristics of the molten pool – length, width and the transverse cross-section. Regression models are estimated for the molten pool geometry characteristics. The influence of other parameters - the initial temperature T₀ and the welded sample thickness - on the temperature distribution during electron beam welding is also demonstrated. The cooling rates temperature range for steels is the 800 – 500 °C (Ve, 800-500) are calculated for the performed experiments and the dependence on the ratio of the input power/welding velocity is presented.

This paper points that the use of simulated experiments combined with experimental investigations on the mechanical, structural and chemical properties of the welded samples allows to perform investigations of the process electron beam welding at a different scale.

**Acknowledgment**

The work has been supported by the Bulgarian National Scientific Fund under contract KP-06-N27/18.

**References**


About Authors:

Assoc. Prof. Dr. Eng. Elena G. Koleva
Institute of Electronics, Bulgarian Academy of Sciences, Bulgaria, 72 Tzarigradsko shosse blvd., 1784 Sofia, Bulgaria

Assoc. Prof and lecturer at University of Chemical Technology and Metallurgy – Sofia, Bulgaria.

Scientific research areas: electron beam technologies – welding, melting and refining, lithography, selective melting, surface modification, electron beam characterization, automation, modeling, optimization, standardization.

Assist. Prof. Mag. Eng. Lilyana St. Koleva - Assistant at the University of Chemical Technology and Metallurgy, Sofia.

Fields of interest are: modeling, parameter optimization, automation, electron beam technologies.


Technological Center on Electron Beam and Plasma Technologies and Techniques, Bulgaria.

He is the author of 10 books, 27 inventions and more than 350 articles. His research interests include electron beam microscope accelerators, electron beam technologies, electron device physics, electron beam welding, melting and refining of metals in vacuum, electron spectroscopy simulation, electron lithography, additive technologies vacuum.

Dipl. Mag. Tsvetomira S. Tsonevska - PhD student to IE – BAS, Bulgaria.
Area of Interest: improving and optimization technological and electron beam processes on the basis of statistical methods and optimization. She is currently working at chief expert in manufacturing processes in the pharmaceutical company.

Assoc. Prof. Dr. Dmitriy Nikolaevich Trushnikov - Department of Applied physics, Department of Welding production and technology of construction materials, Perm National Research Polytechnic University, Perm, Russian Federation; Education - 1999 Department of Aerospace, Perm National Research Polytechnic University

Research Areas – control, monitoring and simulation of electron beam welding.

Assoc. Prof. Dr. Elena G. Koleva
Institute of Electronics, Bulgarian Academy of Sciences, Bulgaria, 72 Tzarigradsko shosse blvd., 1784 Sofia, Bulgaria

Assoc. Prof and lecturer at University of Chemical Technology and Metallurgy – Sofia, Bulgaria.

Scientific research areas: electron beam technologies – welding, melting and refining, lithography, selective melting, surface modification, electron beam characterization, automation, modeling, optimization, standardization.

Assist. Prof. Mag. Eng. Lilyana St. Koleva - Assistant at the University of Chemical Technology and Metallurgy, Sofia.

Fields of interest are: modeling, parameter optimization, automation, electron beam technologies.


Technological Center on Electron Beam and Plasma Technologies and Techniques, Bulgaria.

He is the author of 10 books, 27 inventions and more than 350 articles. His research interests include electron beam microscope accelerators, electron beam technologies, electron device physics, electron beam welding, melting and refining of metals in vacuum, electron spectroscopy simulation, electron lithography, additive technologies vacuum.

Dipl. Mag. Tsvetomira S. Tsonevska - PhD student to IE – BAS, Bulgaria.
Area of Interest: improving and optimization technological and electron beam processes on the basis of statistical methods and optimization. She is currently working at chief expert in manufacturing processes in the pharmaceutical company.

Assoc. Prof. Dr. Dmitriy Nikolaevich Trushnikov - Department of Applied physics, Department of Welding production and technology of construction materials, Perm National Research Polytechnic University, Perm, Russian Federation; Education - 1999 Department of Aerospace, Perm National Research Polytechnic University

Research Areas – control, monitoring and simulation of electron beam welding.