

148

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

Adoption of Formal Methods in the Commercial
World

[Aifheli Nemathaga and John Andrew van der Poll]

Abstract — There have been numerous studies on formal
methods but yet there is diminutive utilization of formal
methods in the commercial world. This can be attributed to
many factors such as that few specialists know how to use
Formal Methods (FMs) and also the use of mathematical
notation gives a perception that formal methods are hard. FMs
have been used in the software development world since 1940
during the earliest stage of computer development. To date
there is a slow adoption of FMs and they are used mostly in
mission critical projects such as in the military and aviation. In
this paper we focus on how to increase the pace of FMs
adoption in the commercial world. As part of this work a
framework is established to facilitate the use of FMs in the
commercial world or commercial systems. A mini ERP system
specification is presented in both an informal technique and a
formal notation to demonstrate how a formal specification can
be derived from informal specification guided by the Enhanced
Established Strategy for formal specification.

Keywords — Commercial system, ERP, First-order logic,

Formal Methods (FMs), Formal Specification, Formal
Verification, Set theory, TLA+, Z, Zermelo-Fraenkel

I. Introduction
This paper investigates the feasibility of utilising Formal

Methods (FMs) within commercial software development.
In addition to the findings it defines and develops a
framework to facilitate the use of FMs in commercial
software development. The paper places the focus on ERP
systems and a small formal methods specification is written
specifying requirements for an ERP system.

This paper is organized as follows: Section II provides
an overview and context of formal methods. Section III of
the paper is about formal methods adoption further
explaining A – the reason for slow adoption and B, the
differences between FMs and natural language/prose.
Section IV is about formal methods in practise which leads
to Section V which in turn gives practical examples of
formal methods in the commercial world. Section VI
presents a formal methods adoption framework and Section
VII concludes the paper and gives directions for future work
in this area.

Aifheli Nemathaga
School of Computing (SoC), Florida Campus
University of South Africa
South Africa

John Andrew van der Poll

Graduate School of Business Leadership (SBL), Midrand Campus
University of South Africa
South Africa

II. FMs Overview and Context
The advancement of hardware during the past 30 years

has led to the development of large and complex systems.
The growing technologies range from mobile devices,
industrial machinery and automobiles. These systems
require fast processing in order for hardware and software to
work together to perform complex tasks [44]. The lines of
code have increased from a couple of lines to 40 million
lines in software and it is still increasing. As these systems
grow designers and engineers face many challenges. These
systems are designed, enhanced and modified often during
their lifetime. Software development is time consuming and
a costly process, and research has shown most software do
not meet users’ needs and is delivered out of their respective
budgets [6]. This also applies to ERP systems, that is ERP
project implementations are mostly unsuccessful or
implemented out of timelines and with higher costs [39].
Consequently, many software development techniques have
been developed to try to overcome these challenges.

Formal methods have shown to be one of the promising
techniques to potentially overcome some of the above
challenges. There are numerous benefits in using formal
methods, e.g. they have been shown to reduce the number of
defects in software development [1]. In the software
development world there is always a search to find better
ways of developing software that are free from errors and
delivered within timelines and on budget. This led to the
development of various frameworks and methodologies of
software development. The most famous and widely used is
the traditional waterfall methodology which proposes that
software has to be developed using a stepwise approach, i.e.
requirements, design, implementation, verification and
maintenance [31]. Each stage must be finalised prior to
starting the next. Waterfall is one of the oldest models still
used today [28]. Yet, many of the waterfall projects are
delivered out of budget, with many defects and the end
product usually does not present the real needs of the user
[29]. There is an increased uptake of the Agile methodology
in the commercial world; software is developed in
increments and in rapid cycles. Agile’s main objective is to
deliver value to customer by means of working software [4].
An agile methodology is guided by a manifesto which
defines the principles that must be followed when using
Agile. That said, Agile has many disadvantages such as a
lack of documentation and the project can easily be taken
out of track if a customer’s requirements are not well
understood. Given the aforementioned, formal methods can
plausibly be incorporated during any stage or phase of the
SDLC and has proven to reduce the error count [14].

III. Formal Methods Adoption

Software testing has traditionally been the only
technique that has been used and is still used to find defects.
Yet, code testing is not an effective way of finding subtle

149

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

bugs/error in the design. The use of formal methods helps to
reduce errors early in software development, thereby saving
on the cost of software projects. Formal methods are
categorised mainly in two groups, namely, (1) Pure
mathematics which is challenging and is mostly not used in
the real world, and (2) Software engineering which focuses
on creating high quality software [42].

Formal methods use mathematics to analyze and verify
models at any stage of the software development process
[45]. One of the most significant parts of the development
process is to understand the needs of the users. According to
George and Vaughn [14] formal methods are useful when
gathering, articulating, and representing requirements. This
then assists the developer in developing a system that meets
a user’s needs.

Another type of formal methods is the state-based
method, which involves the creation of state machine
specifications, simulation proofs and abstract functions.
During development formal methods are used to verify code
by attempting to prove theorems (discharging proof
obligations) about the proposed system. Some tools used for
formal methods can automatically generate compilable code
e.g. the B-method. The clarity, completeness and
consistency of a formal specification facilitate the derivation
of test cases [41]. As part of this paper a formal specification
will be documented using the Z notation which is a formal
language as indicated in Figure 1.

 Sequential Concurrent

Algebric

Larch (Guttag, et al.,
1993)

Lotos (Bolognesi and
Brinksma, 1987),

OBJ (Futatsugi, el al.,
1985)

Model-
based

Z (Spivey, 1992) CSP (Hoere, 1985)
VDM (Jones, 1980) Petri Nets (Peterson, 1981)

 B (Wordsworth, 1996)

Figure 1. Formal Specification Languages [34].

A. Reasons for Slow Adoption
Many software development institutions don’t consider it

to be cost-effective to incorporate FMs in their software
development processes [34]. Some of the stumbling blocks
in the use of FMs in the commercial world is the perception
that requirements formalization is difficult and the creation
of a formal specification as part of the formal methods
process is error prone and time consuming [3]. Formal
methods are based on mathematical notations, which are
perceived as being hard, but in reality the notation can
readily be mastered and used. For example, it is easier to
learn such notation than learning a new programming
language [7].

Another reason for the slow adoption of FMs is that most
engineers also view FMs to be a mechanism that is
practically hard to understand and utilise [35]. In the same
vein, the commercial world or businesses are of the view
that using FMs will increase the cost of system development
due the level of training required. Education plays a major
role to individuals developing and designing systems. In
addition also management need to be educated if they are to

successfully apply formal methods within their
organizations [45].

The above ideas lead to the following proposition to be
used in the construction of our formal-methods adoption
framework:

Proposition (Prop) 1: Education plays a major role in
formal methods adoption. This includes educating from the
high school level to the university level as well as
organisational training in formal methods. Such education
plays a pivotal role in the adoption framework.

As more software development processes gain popularity
e.g. the Agile methodology, there is a view that formal
methods do not support other software development
processes. Yet, formal methods can be beneficial in every
step of the software development life cycle as they assist in
alleviating unclear and unrealistic requirements at the start
of the development process, leading to the production of a
high quality product with fewer defects [11].

The lack of easy step-by-step guidelines on how to use
formal methods also contributes to the slow adoption. Many
developers view formal methods as being limited to
academic projects for tertiary education. Bowen & Hinchey
[8] postulated that tools, standards, and education would
make or break commercial adoption, while some observed
differences among academics who view FMs as
―inevitable‖.

Most traditional software development techniques are
established and proper standards have been set. Tools
supporting those techniques are widely accepted and used in
business [35]. On the other hand, FMs appear to have
inadequate tool support. Some formal methods tools do not
work suitably with development/programming tools. Formal
methods tools are also not seen as facilitating the user
experience (UX) [44].

When compared to traditional techniques there are many
certifications that one can acquire and many institutions
offer training around such techniques. The study done by
Davis [10] shows that formal methods adoption may also be
attributed to certification authorities not having enough
education on how to appraise FMs artefacts and they are not
highly informed of formal methods benefits and underlying
techniques.

The above discussion leads to further insight into
Proposition 1 as follows:

Prop 1.1: In addition to the above proposition formal
certificates and diplomas in formal methods should be
created and awarded to those who qualify. Certification
authorities should be well informed about the benefits of
formal methods.

Usually when developing a system for clients, users
review and sign off the requirements specification i.e. the
Business Requirement specification (BRS) or Functional
Requirement Specification (FRS). The reviews are for
validation and ensuring all user requirements are included in
the specification [18]. The specification can then be used to
bill an external client; for an internal client an agreement
could confirm that the stated requirements will be
developed. Clients find it hard to review formal
specifications due to the mathematical notations used,
resulting in project delays.

150

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

There is also a psychological and human resource factor
with the slow adoption of FMs in business. Within the
organization or business some people just do not like
formalism; the same applies to formal methods as some
engineers, especially those who are already in an agile
environment, will be more reluctant to use FMs [35]. In the
commercial world the development of some projects are
relatively fast, so there is little time to conduct a proper
formal analysis. In today’s world individuals change
positions frequently, for example from a software engineer
to a manager or even changing companies. This results in
having to upskill a new employee which is time consuming.

Consequently we arrive at our next proposition:

Prop 2: Buy-in from all the business stakeholders is
necessary for FMs adoption. Getting Top level management
to agree and accept the use of formal methods may well
result in the whole organisation adopting formal methods.

As indicated, there are numerous misunderstandings
with formal methods, leading to slow adoption in business.
Businesses view formal methods as a technique that places
too much emphasis on the theory, rather than real world
applications. Another huge misconception is that if FMs are
used, then there is no need for testing; this relates to one of
the 7 FMs myths – the use of a formal method guarantees
that the resulting software or system is perfect [20].

There is a huge gap between the real world and
formalism, namely, transforming clients’ requirements from
informal requirements to formal requirements requires
serious clarification of the problem [24]. Generally, there is
no widely accepted principle or guidance of eliciting a
client’s requirements and how to specify them using a
formal specification language [20].

Sommerville [34] indicated four (4) reasons of why there
is a slow adoption of FMs in the commercial world:

1. The utilization of other system engineering techniques,
e.g. configuration management and structured
techniques have improved software quality.

2. Lately, software is developed and delivered fast. The
main focus is time to market (TTM) rather than
quality; in some instances customers will accept
software with some errors so long as it can be
delivered rapidly. Rapid software delivery does not
work well with formal methods.

3. The narrow scope of formal methods often does not
cater for user interface design and user interaction.

4. Developing a formal specification for a system upgrade
becomes a time consuming and costly process, aspects
which the commercial world are unlikely to
compromise on.

The above leads to the following proposition:

Prop 3: Widely accepted principles and guidelines on
FMs can improve the adoption thereof. Practical, real world
examples of FMs successes and failures must be published
in the software engineering and management communities.

B. Differences between formal and
informal (natural language)
specifications

TABLE I. DIFFERENCES BETWEEN FORMAL AND INFORMAL

SPECIFICATIONS [19].

Informal (natural language) Formal Methods

Each stakeholder has his/her own
interpretation of the requirements.

There is generally a complete and
broad view of system requirements.

More errors present, and if not
corrected can result in high project
costs.

Fewer errors and omissions in the
specification document.

Uses a combination of graphics and
semiformal notations.

Uses mathematical notation, first-
order logic and natural language
prose.

Little or no use of Mathematics.
General knowledge on the software
engineering domain used.

Specifiers and stakeholders ought to
be familiar with the mathematical
notation.

Specifiers leave room for
inconsistency and ambiguity.

Provides conciseness, clarity and
unambiguity.

They are ideal for eliciting
requirements.

Allows the software engineer to
produce high quality systems.

Both formal notations and informal techniques can result
in a vague understanding of the system [24]. All this
depends on the software engineer or the developer
understanding what to build irrespective of the language
used in the specification. Depending on the specifier’s
willingness, it is possible to learn formal languages but it
takes time and may be a costly exercise.

IV. FMs in practice

For this paper we will show how FMs are written and the
chosen language for this paper is Z [36]. The commercial
system that will be specified formally is an ERP system.

A brief discussion of what an ERP system is follows
next.

A. What is Enterprise Resource
Planning (ERP)?
As per Seo [32] ―ERP is a software architecture that is

designed in order to expedite the information flow as well as
the information sharing between various departments in a
company, and also to provide to decision-makers an
enterprise-wide view of all information that they may need
to assist them in decision-making‖.

From the above description it follows that Enterprise
Resource Planning (ERP) systems are combined software
programmes that are clustered into standard functional
modules i.e. Procurement, Human resources, Finance,
Contract management, Customer relationship management
(CRM), etc. developed by a Vendor or in-house [26].
Usually a single database, or more generally a data
warehouse, together with a unified interface across the entire
enterprise is utilized [2]. Some ERP software can be
purchased off the shelf and customized afterwards to meet
specific customer needs. An ERP system assists business in
performing their daily operations which can bring about

151

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

substantial benefits within the organization. Despite all the
benefits mentioned above, ERP project implementations are
mostly unsuccessful or implemented out of timelines and
with higher costs than budgeted [39].

Failure of ERP project implementation can be attributed
to different factors such as unclear requirements, project
managers focusing on the financial aspect of the business
and neglecting other parts of the project and no proper
software development process in place to manage the
projects to name a few. Most of the time the success of the
project is attributed to delivering the project within the
timelines and on budget; developers and managers tend to
forget about the users of the system and the smooth change
from a previous (existing) process to the new one [16]. Most
of the aforementioned failures do apply when implementing
other software such as CRM, Billing systems etc. The
researchers believe the use of formal methods will help
alleviate many of the problems during ERP implementation
in an organization.

1) ERP Modules

The ERP architecture in Figure 2 presents some of the
main modules that are contained in an ERP system.

Figure 2. An ERP Architecture [22] .

The focus of this paper will be on the procurement
module otherwise known as the purchasing module. The
reason for this is that a procurement module is usually the
most widely used module in an organisation [13].

The Procurement module deals with the purchasing of
materials for internal use or resale within the organization.
Procurement mostly have a built-in workflow which can
automatically evaluate the supplier, measure the inventory at
hand which is otherwise known as warehouse management.
Lastly, most of the purchasing modules are integrated into
invoice verification. Gao [13] calls the procurement module
the ―internet procurement‖.

B. The Z Specification Language
The Z specification language was established in the late

1970s at Oxford University by the Programming Research

Group otherwise known as the PRG [11]. Z is constructed
on a strongly typed fragment of Zermelo-Frankel
(mathematical) set-theory and first-order logic; it embodies
a rich notation. Using a formal specification language such
as Z, software systems can be designed with little
uncertainties [17]. Many formatting tools such as Latex and
type-checkers for writing syntactically correct Z
specifications have been developed since Z is written mostly
in non-ASCII mathematical symbols (refer to the Z schemas
that follow).

A Z specification comprises of schemas with narrative
text in-between. A schema is an organizing unit that
contains logically associated mathematical notation.

Below is the generic format of a Z schema:

 SchemaName

Apart from a few exceptions, a Z schema is usually
divided into 2 parts as follows. Part one above the short
(middle) dividing line specifies the variables (components)
and their types (declarations) to be used in the specification.
Part two specifies, in first-order notation, the constraints on,
and relationships among the components of the
specification.

1) Some of the tools that are used for a
Z specification

Naturally, tool support assists a lot when developing a Z
specification. One of the add-on advantages of Z over some
other languages is a number of software tools that have been
developed to assist with the construction of a specification
[42].

 CadiZ – Computer aided design in Z by Mcdermid
and Toyn [40], used to construct, type check and
reason about a Z specification.

 Fuzz – Mike Spivey’s commercial type checker for
Z [36]. More information is available at the URL:
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecke
r_for_Z.

 The Community Z Tool (CZT) by Utting and Malik
[25] (http://czt.sourceforge.net/) is another useful
addition to the arsenal for writing Z specifications.

Using a formal notation assists in understanding how the
system will operate and it allows the developer to have more
choices about the design of the system [17]. The omitted
parts of the specification become easy to identify and the
overall quality of the specification document is enhanced.

The above discussions leads to our next proposition:

Prop4: Tools that are readily available and up to date
with the lasted technology should facilitate the adoption of
FMs. Such tools should be integrated with the requirements
management software and standard software programming
tools e.g., MS Visual Studio.

The development of the Z specification presented below
will be guided by the Enhanced Established Strategy (E2S)

Declarations

Predicate1;…;Predicaten

Contract
Update

Employee Leave
Payroll

Recruitment
Performance appraisal

Inventory

Supplier
management
Warehouse
management
Scheduling

General Ledger
Budgeting

Human

ERP Data

Base

http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z
http://czt.sourceforge.net/

152

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

created by Van der Poll and Kotze [43]. The Enhanced
Established Strategy stems from the Established Strategy for
constructing a Z specification and gives guidance and
principles to the software engineer when writing a Z
specification.

2) Procurement requirements

Partial requirements of our ERP system in this paper are
depicted in TABLE II.

TABLE II. PROCUREMENT MODULE REQUIREMENTS LIST

No Formal Methods

1 The system must be able to keep track of stock for several products

2
Product should have a name, price and quantity of available stock
recorded on the system.

3 Each product must have a unique name.

4
User should be able to update products name, price and quantity of
stock on hand.

5 The system should have the ability to produce a report with all the
products that are below set threshold.

6 The system should allow for the capturing of orders.

7 Once a new order for a specific product is captured it will stay on the
―pending‖ status.

8 All orders on the pending status can be deleted, once deleted the
status should change to ―Cancelled‖.

9 A quantity of order should always be more than one.

10 A record of the quantity, price and product name order must be kept.

11 All orders with the status that is pending should be processed when
there is required stock on hand.

12

Once the order is processed the status should change to ―processed‖

and the quantity should decrease with same number if products
ordered.

13

Customer information needs to be stored and linked to the order.
Information includes the name, address and phone number must be
stored.

14 One customer can have multiple orders

3) Formal Specification of the

Purchasing Module

State Space of Product Schema

Schema Product below specifies aspects of products in
the ERP system (recall emphasis will be on the procurement
part of the ERP).

 Product

Product Schema summary

ℙ PRODUCT represents characteristics of all product
detail in the system. Further specification of these
characteristics is beyond the scope of this paper.

prodPrice: PRODUCT ⇸ AMOUNT is an attribute
(monetary amount) of the product and it is declared as a
partial function notation (⇸).

prodName: PRODUCT ⤔ STRING denotes the name of
the product. Requirement no 3 in TABLE II states that no
two products can have the same name, hence a partial
injective function is used to specify product names.

The domains are specified in the predicate part of the
schema. In this requirement each attribute of the product
should equal the identities collection. i.e.

dom produName = products

dom produPrice = products

dom proQuantity = products

State Space of Customer Schema

Before creating an Order schema a customer schema
ought to be specified. A customer is linked to an order.

 Customer

customers: ℙ CUSTOMER

custoAddress: CUSTOMER ⇸ STRING

custoPhone: CUSTOMER ⇸ STRING

dom custoAddress = customers

dom custoPhone = customers

Customer Schema summary

Definition customers: ℙ CUSTOMER represents the set
of all existing customers in the system.

Definitions custoAddress: CUSTOMER ⇸ STRING and
custoPhone: CUSTOMER ⇸ STRING are attributes of
customers and are specified using a partial function (denoted
by ⇸). For reasons of space the Order schema which links an
order to a customer is not shown in this paper.

The above formal specification fragment shows how the
procurement module can be specified using a formal
method, in this case Z. Some other formal notations are
VDM, B, CSP, OBJ, etc.

Aspects of formal specification illustrated in this section
lead to proposition 5:

Prop 5: Using the Z notation as an entry language ought
to facilitate the adoption of formal methods. Z is believed to
be easy to learn and apply. Only basic mathematical set
theory and logic are required.

products: ℙ PRODUCT

produName: PRODUCT ⤔ STRING

produPrice: PRODUCT ⇸ AMOUNT

proQuantity: PRODUCT ⇸ ℕ

dom produName = products

dom produPrice = products

dom proQuantity = products

153

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

V. Formal Methods in the

commercial world
Since the development of formal methods in the 1980s,

their adoption or use within the business arena is slow [10].
Yet, the following software and hardware giants are known
to be using Formal Methods:

 Amazon

 Intel

 NASA

 NATS

 Xilinx

Other companies known to also use FMs are:
Qualcomm, Nvidia, Cisco, Broadcom, Samsung, Mediatek,
AMD, and Huawei. Originally Google’s and Microsoft’s
main foci were software but they starting to develop their
own hardware and they have since also adopted formal
methods [9]. Start-ups are slowly picking up formal methods
as these provide a good return on investment (ROI) with
clean code, hence less money is spent on rectifying defects
[30].

Next we elaborate on the successful use of FMs by the
Intel company

Intel’s core business is hardware; for hardware to
function correctly, the following needs to be developed:
Microcode, Firmware, Protocols and Software. In almost all
the products Intel provide, they used to experience problems
with the diversity of verification [12]. Consequently, Intel
developed various solutions in an attempt to solve
verification problems. Their solutions include Propositional
Equivalence Inspection (PEI), Symbolic simulation,
Symbolic Trajectory Evaluation (STE) and temporal logic
model checking.

Intel experienced numerous challenges with some of
their products, the most challenging was a physical problem
which was the overheating of their Chips and the FDIV bug,
which could readily be solved through the use of formal
methods. Intel invested over $147 million to cover the cost
incurred from chip overheating and the verification
problems which also led to the improvements of formal
methods within Intel. Intel has realised numerous benefits
with using formal methods and they continue to use them on
many projects [9].

The above discussions lead to our next proposition:

Prop 6: Publications of formal methods successes in
terms of the money saved in projects, clear specification
produced and the overall final product delivered with fewer
defects will raise much interest needed for the adoption of
FMs.

Next we combine our propositions and above
observations into a formal-methods adoption framework.

VI. Formal Methods Adoption

Framework
The proposed framework will be based on the

propositions made in this paper and the work that has been
done in this knowledge area by other researchers. We first
discuss the framework in a tabular format then a graphical
presentation of the framework is presented.

A. Adoption Framework Table
A framework can be defined as a skeleton or a basic

structure of the underlying system [5]. This can be updated
as required by adding or deleting items. From a software
perspective it can be defined as a set of functions within a
system and how they interconnect.

TABLE III presents the proposed framework on the
strength of the propositions identified throughout the paper
and this assisted in creating our Formal Methods Adoption
Framework.

TABLE III. ADOPTION FRAMEWORK

 DISCUSSION

Education

Software engineering education in the early stage
Introduction to formal methods for first year
university students
Universal formal methods standards
University accreditation specifically on formal
methods
Set theory basics at an early stage of
educationssystems
Step by Step guide on transforming informal
requirement to formal specification
Knowledge sharing and common terminology

Buy-in

Public sector using formal methods for their
systems
Enterprise Top management buy-in
Project Manager and Senior managers buy-in
Training companies
IT community buy-in
Formal Method language e.g. Z

Remuneration FM specialist salaries, Scare skill

Environment

IT environments where FMs are going to be
utalised
Tools to write formal specification
Integration of MS office to formal specification
languages
Open source tools
Collaborative environment for formal methods
specialist to meet
Built the right attitude within teams, Team
buildings

Support Tools LaTeX, Fuzz,

Publications

Successful use of formal methods should be
published regularly
Forums i.e. internet news letters of formal methods
Encourage use of formal methods on open source
systems
Library catalogue on formal methods

Results

Positive and negative results should be made
available
Description of each successful component of the
system built using formal methods
System developed using formal methods used in
real business environment
Positive and negative results should be made
available

154

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

B. Adoption Framework Diagram
Figure 3 is the graphical presentation of the framework

in TABLE III. All the steps can be performed in parallel. The
larger box represents that the more we focus on that step the
higher the probability that the adoption will be a success.

Figure 3. Formal Merhods Adoption Framework

The contents of Figure 3 are discussed next.

Education: This all important aspect forms the
foundation to allow for the adoption of FMs in the
commercial world. Without dedicated education and the
transfer of skills to the new and upcoming engineers the
current state of formal methods may well stay as–is. As
observed in TABLE III above, education should be from a
level as early on as high school. A basic introduction to
formal methods should be given, followed at university level
by a module on formal methods for first year students.
Education will also go a long way to solve the problem of
not having a common terminology in formal methods.
Students who qualify or pass this course should be
recognised by awarding an appropriate accreditation. The Z
notation is relatively easy to teach and learn as it requires
basic mathematical knowledge. Students and IT
professionals might start off by first learning Z and then be
introduced to other formal specification languages over
time.

Buy-in: IT professionals should be encouraged to use
and invest in the use of FMs within their organisations. Buy-
in is needed from top management right through to the
project manager and the software engineers. Public
enterprise buy-in to utilize formal methods in their systems
is also important. Furthermore, buy-in from companies that
provide IT training courses and the IT community in general
will have a major impact on the promotion of formal
methods. Established professional societies (e.g. the IEEE)
can provide standardized FM teachings in the use and
practical application of formal methods. To secure the
necessary buy-in from software engineers, training or
awareness of formal methods should be provided in a top
down approach; i.e. from top management to senior
managers, then analysts and then developers. With Z as a
recommended formal-methods language for this research,
top management need to understand the benefits that Z
brings, such as it is easy to comprehend and also the

flexibility it inhibits to model a specification that can lead
directly to code through successive transformations, and so
forth. Many specifiers are familiar with the Z syntax and
semantics, hence it’s arguably the most used formal
language [7].

Remuneration: Good compensation to FM specialists
will also attract more people to join the formal methods
arena. It should also motivate students and professionals
already in the computer science industry to obtain
certification in formal methods. Most companies nowadays
are concerned with cutting cost and that’s what top
management understands to place as a priority. Hard
evidence of cost saving, reduction in development time and
the improved quality of the resultant system when using
FMs, should be made available to portfolio- and programme
managers.

Environment: Equally important is the environment in
which formal methods are to used. The environment should
encompasses proper tools to facilitate the use of formal
methods. Integration of current software engineering tools
with formal methods tools to allow for a smooth transition
should be put in place. Teams working on formal methods
must have the right attitudes which can also be influenced
by the environment they are working in. An encouragement
of the use of formal methods in Open source software will
bring about new ideas and engender a positive attitude and
perception towards formal methods.

Support tools: FMs tools should enhance the UX (i.e.
be user friendly) and should allow for an easy integration
into current development environment such as the .NET
framework and Linux development frameworks. It should
also be possible to integrate FMs artefacts and techniques
into an existing SDLC. As more and more computer devices
are mobile e.g. smart phones and tablets, more Apps for
these devices should utilise some form of formalisation.
FMs tools should have more automation as well as
automated test generation. Lastly, formal methods should
facilitate clear estimations on how long it will take to
perform analyses. For example, Van der Poll [42] states that
―it must be possible to continuously measure the progress
archived by formal technique during software
development‖.

Publication: Regular publications on formal methods
usage should be encouraged. This can be made available via
internet news letters, forums, blogs and a public library
(Library catalogue on formal methods). As we can see from
the the FMs adoption framework in Figure 3, buy-in and
environments feeds into publication(s). A positive buy-in
and conducive environment should lead to the successful
implementation of formal methods – these should be
publicised. In South Africa we have an institute called the
CSIR (Council for Scientific and Industrial Research) which
is a leading technology research organisation in the country.
This body can be used to promote the use of formal methods
in software development.

Results: after all the steps have been followed, positive
results and findings should be the output. Even negative
results should be made known and lessons should be learned
through these. Results should lead to the development of the
systems using formal methods in the practical world. Each
successful component should be described and how success
was archived.

Prop 1

P1 Buy-in P2

D

U

C

A

T

I

O

 Z Notation

U

B

L
I

C

A

T

I

N

E

S

U

L

T

P1 Environment P4 Support Tools

P6

155

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

Without proper education and transfer of skill
to the new upcoming software engineers the

current state of formal methods will stay as–is.

VII. Conclusions and Future work
The use of Formal Methods for software development

has been shown to be beneficial, yet their adoption in
commercial software development remains slow. Formal
methods are still viewed as being difficult owing to their use
of mathematical notations. Also, there are many myths that
surround the use of formal methods, such as they guarantee
a perfect system. Putting more emphasis on education and
results will help in the increased uptake of formal methods
commercially.

Tools that are readily available and enhance the user
experience (UX) will not only encourage specifiers and
software engineers to embark on formal methods but aid in
producing specifications and systems that are most likely
error free. Positive results on the successful utilization of
FMs in the commercial system should be made publicly
available.

More research and development need to be undertaken to
promote the commercial uptake of FMs. Both the public and
private sectors should be encouraged to engage with these
processes.

A. Future work
Formal methods have been around for years and this

paper focused on what could be done to increase formal
methods usage in commercial world. While this paper made
a contribution towards the uptake of FMs through an
adoption framework, much work remains to be done.

Common terminology ought to be developed across the
academic and industrial formal methods fields. This needs to
be widely accepted and standardized across the board. The
issue of formal methods tools have been cited by many
researchers, tools needs to be developed and these include
automated and semi-automated reasoners to discharge proof
obligations (POs) resulting from formal specification
constructs. Existing tools are either not user friendly or do
not perform all the required functionality to write formal
specifications [21]. Such tools need to be integrated with
current development frameworks such as .NET and JAVA
to name a few. Automatic conversion of first-order logic
specifications to a full Z specification needs to be looked at.
Tools need to be classified and demonstrations of the tools
in the form of videos (vodcasts), also indicating the strength
of it in practice, ought to be made.

Immediate future work following this paper will be in
the form of a survey among academics and practitioners to
validate and enhance the framework in Figure 3. Such
instrument to assist business in choosing the correct off-the-
shelf FMs tools must be made available to business to assist
them in their IT operations. More practical examples are
needed specifying the advantages and disadvantages of
different FMs design methodologies.

Amongst others, the following questions need to
addressed:

 How can a formal specification be validated with the
user and other stakeholders?

 How can a formal notation be sensibly integrated
with more widely used notations such as UML, its
class diagrams and use case diagrams?

 How can one automate formal descriptions to
generate test cases or even code?

References

[1] Adesina-Ojo, A. (2011). Towards the formalisation of object-oriented
methodologies. University of South Africa, Pretoria. Retrieved from
http://hdl.handle.net/10500/11957

[2] Al-Ghofaili, A. A., & Al-Mashari, M. A. (2014). ERP system
adoption traditional ERP systems vs. cloud-based ERP systems. In 4th
International Conference on Innovative Computing Technology,
INTECH 2014 and 3rd International Conference on Future Generation
Communication Technologies, FGCT 2014 (pp. 135–139).
https://doi.org/10.1109/INTECH.2014.6927770

[3] Atlee, J. M., Beidu, S., Day, N. A., Faghih, F., & Shaker, P. (2013).
Recommendations for improving the usability of formal methods for
product lines. In 2013 1st FME Workshop on Formal Methods in
Software Engineering, FormaliSE 2013 - Proceedings (pp. 43–49).
https://doi.org/10.1109/FormaliSE.2013.6612276

[4] Beck, K., Beedle, M., Bennekum, A. Van, Cockburn, A.,
Cunningham, W., Fowler, M., … Thomas, D. (2001). Manifesto for
Agile Software Development. Retrieved from
http://agilemanifesto.org/

[5] Börger Egon, & Stärk Robert. (2003). Abstract State Machines.
Springer-Verlag Berlin Heidelberg, 437. https://doi.org/10.1007/978-
3-642-18216-7

[6] Bourque, P., & Fairley, R. E. (2014). SWEBOK v.3 - Guide to the
Software Engineering - Body of Knowledge. IEEE Computer Society.
https://doi.org/10.1234/12345678

[7] Bowen, J. P. (2016). The Z notation: Whence the cause and whither
the course? In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (Vol. 9506, pp. 103–151).
https://doi.org/10.1007/978-3-319-29628-9_3

[8] Bowen, J. P., & Hinchey, M. (2012). Ten commandments of formal
methods… Ten years on. In Conquering Complexity (pp. 237–251).
https://doi.org/10.1007/978-1-4471-2297-5_11

[9] Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., &
Vanzetto, H. (2012). TLA + proofs. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (Vol. 7436 LNCS, pp. 147–
154). https://doi.org/10.1007/978-3-642-32759-9_14

[10] Davis, J. A., Clark, M., Cofer, D., Fifarek, A., Hinchman, J.,
Hoffman, J., … Wagner, L. (2013). Study on the barriers to the
industrial adoption of formal methods. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-
642-41010-9_5

[11] Dongmo, C., & Van der Poll, J. A., (2016). Formalising non-
functional requirements embedded in user requirements notation (urn)
models. University of south africa.

[12] Fix, L. (2008). Fifteen years of formal property verification in intel. In
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
(Vol. 5000 LNCS, pp. 139–144). https://doi.org/10.1007/978-3-540-
69850-0_8

[13] Gao, J., Zhang, L., & Wang, Z. (2008). Decision support in procuring
requirements for ERP software. In Proceedings of the 9th
International Conference for Young Computer Scientists, ICYCS
2008 (pp. 1126–1131). https://doi.org/10.1109/ICYCS.2008.158

[14] George, V. & Vaughn, R. (2003). Application of lightweight formal
methods in requirement engineering. Crosstalk: The Journal of
Defence Software Engineering.

[15] Gibbons, J., & Oliveira, J. N. (2009). Teaching Formal Methods
[electronic resource] : Second International Conference, TFM 2009,

http://hdl.handle.net/10500/11957
http://hdl.handle.net/10500/11957
http://agilemanifesto.org/
http://agilemanifesto.org/

156

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

Eindhoven, The Netherlands, November 2-6, 2009. Proceedings /
edited by Jeremy Gibbons, JosÃ© Nuno Oliveira. Springer eBooks.

[16] Grabski, S. V., Leech, S. A., & Schmidt, P. J. (2011). A Review of
ERP Research: A Future Agenda for Accounting Information
Systems. Journal of Information Systems.
https://doi.org/10.2308/jis.2011.25.1.37

[17] Hussain, S., Dunne, P., & Rasool, G. (2013). Formal specification of
security properties using Z notation. Research Journal of Applied
Sciences, Engineering and Technology.

[18] IIBA. (2015). A Guide to the Business Analysis Body of Knowledge
(BABOK). International Institute of Business Analysis, Toronto,
Ontario, Canada. https://doi.org/10.1017/CBO9781107415324.004

[19] Ilić, D. (2007). Deriving formal specifications from informal
requirements. In Proceedings - International Computer Software and
Applications Conference.
https://doi.org/10.1109/COMPSAC.2007.104

[20] Jaspan, C., Keeling, M., Maccherone, L., Zenarosa, G. L., & Shaw,
M. (2009). Software mythbusters explore formal methods. IEEE
Software. https://doi.org/10.1109/MS.2009.188

[21] Kefalas, P., Eleftherakis, G, A, S. (2003). Developing Tools For
Formal Methods. In Proceedings of the 9th Panhellenic Coneference
in Informatics.
http://doi.org/http://dx.doi.org.ezaccess.libraries.psu.edu/10.3149/jms.
1403.379

[22] Kilic, H. S., Zaim, S., & Delen, D. (2015). Selecting ―the best‖ ERP
system for SMEs using a combination of ANP and PROMETHEE
methods. Expert Systems with Applications, 42(5), 2343–2352.
https://doi.org/10.1016/j.eswa.2014.10.034

[23] Kneuper, R. (1997). Limits of formal methods. Formal Aspects of
Computing, 9(4), 379–394. https://doi.org/10.1007/BF01211297

[24] Li, F.-L., Horkoff, J., Borgida, A., Guizzardi, G., Liu, L., &
Mylopoulos, J. (2015). From Stakeholder Requirements to Formal
Specifications Through Refinement. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (Vol. 9013, pp. 164–180).
https://doi.org/10.1007/978-3-319-16101-3_11

[25] Malik, P., & Utting, M. (2005). CZT: A Framework for Z Tools. In
ZB 2005: Formal Specification and Development in Z and B 2005:
Formal Specification and Development in Z and B.
https://doi.org/10.1007/11415787_5

[26] Markus, M. L., & Tanis, C. (2000). The Enterprise System Experience
— From Adoption to Success. Framing the Domains of IT
Management: Projecting the Future Through the Past, 173–207.
https://doi.org/10.1145/332051.332068

[27] Nwankpa, J. K. (2015). ERP system usage and benefit: A model of
antecedents and outcomes. Computers in Human Behavior.
https://doi.org/10.1016/j.chb.2014.12.019

[28] Palmquist, M. S., Lapham, M. A., Miller, S., Chick, T., & Ozkaya, I.
(2013). Parallel Worlds: Agile and Waterfall Differences and
Similarities. SEI, Carnegie Mellon University.
https://doi.org/CMU/SEI-2013-TN-021

[29] Pressman, R. S. (2009). Software Engineering A Practitioner’s
Approach 7th Ed - Roger S. Pressman. Software Engineering A
Practitioner’s Approach 7th Ed - Roger S. Pressman.
https://doi.org/10.1017/CBO9781107415324.004

[30] Preuß, S., e, N. A., Gerber, C., & Hanisch, H. M. (2011). Virtual start-
up of plants using formal methods. International Journal of Computer
Applications in Technology.
https://doi.org/10.1504/IJCAT.2011.045401

[31] Royce, W. (1970). Managing the Development of Large Software
Systems. Proceedings, IEEE WESCON, (August), 1–9.

[32] Seo, G. (2013). Challenges in Implementing Enterprise Resource
Planning (ERP) System in Large Organizations: Similarities and
Differences Between Corporate and University Environment. MIT
SLOAN School of Management. https://doi.org/857768973

[33] Shehab, E. M., Sharp, M. W., Supramaniam, L., & Spedding, T. A.
(2012). Enterprise resource planning. Business Process Management
Journal, 10(4), 359–386. https://doi.org/10.1108/14637150410548056

[34] Sommerville, I. (2016). Software Engineering. Software Engineering.
https://doi.org/10.1111/j.1365-2362.2005.01463.x

[35] Spichkova, M. (2012). Human factors of formal methods. In
Proceedings of the IADIS International Conference Interfaces and
Human Computer Interaction 2012, IHCI 2012, Proceedings of the

IADIS International Conference Game and Entertainment
Technologies 2012.

[36] Spivey, J. (1992). The Z notation. Prentice Hall International (UK)
Ltd. Retrieved from http://www.rose-
hulman.edu/class/se/csse373/current/Resources/zrm.pdf

[37] Srihasha, A. V, & Reddy, A. R. M. (2015). Modest Formalization of
Software Design Patterns. International Journal of Latest Research in
Engineering and Technology.

[38] Steyn, P. S. and Van der Poll, J. A. ―Validating Reasoning Heuristics
Using Next-Generation Theorem Provers‖. In The 5th International
Workshop on Modelling, Simulation, Verification and Validation of
Enterprise Information Systems (MSVVEIS), pp. 43 – 52. Funchal,
Madeira, Portugal, June 2007. ISBN 978-972-8865-95-5.

[39] Suryalena. (2013). Enterprise resource planning (erp). Jurnal Aplikasi
Bisnis, 3, 145–154.

[40] Toyn, I., & McDermid, J. A. (1995). CADi: An architecture for Z
tools and its implementation. Software: Practice and Experience.
https://doi.org/10.1002/spe.4380250306

[41] Tretmans, J., & Belinfante, A. (1999). Automatic Testing with Formal
Methods. Analysis.

[42] Van der Poll, J. A. (2010). Formal Methods in software Development:
A Road Less Travelled. South African Computer Journal.

[43] Van der Poll, J. A., & Kotze’, P. (2005). Enhancing the Established
Strategy for Constructing a Z Specification. School of
Computing,University of South Africa, 0003, (35), 118–131.

[44] Wassyng A., Lawford M. (2003) Lessons Learned from a Successful
Implementation of Formal Methods in an Industrial Project. In: Araki
K., Gnesi S., Mandrioli D. (eds) FME 2003: Formal Methods. FME
2003. Lecture Notes in Computer Science, vol 2805. Springer, Berlin,
Heidelberg

[45] Woodcock, J. I. M., Larsen, P. G., Bicarregui, J., & Fitzgerald, J.
(2009). Formal Methods: Practice and Experience. ACM Computing
Surveys, 41(4), 40. https://doi.org/10.1145/1592434.1592436

[46] Xilinx. (2005). Xcell Journal, Issue 55 Fourth Quarter 2005.
Technology.

https://doi.org/10.2308/jis.2011.25.1.37
https://doi.org/10.2308/jis.2011.25.1.37
http://dx.doi.org.ezaccess.libraries.psu.edu/10.3149/jms
https://doi.org/10.1145/1592434.1592436

157

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

Aifheli Nemathaga is a qualified
software engineer at a South African

software company. His research
interests are in Formal Methods for

correct software development.

John Andrew van der Poll holds a PhD
in Computer Science from the

University of South Africa (Unisa).
He is a full professor at the Graduate
School of Business Leadership (SBL)

and his research interests are in the
construction of highly dependable

software for Business ICTs.

About the Authors:

