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Abstract— Existing traffic light controls are ineffective and 
causes a handful of problems such as congestion and pollution. 
The purpose of this study is to investigate the application of deep 
reinforcement learning on traffic control systems to minimize 
congestion at a targeted traffic intersection. The traffic data was 
extracted, analyzed and simulated based on the Poisson 
Distribution, using a simulator, Simulation of Urban Mobility 
(SUMO). In this research, we proposed a deep reinforcement 
learning model, which combines the capabilities of convolutional 
neural networks and reinforcement learning to control the traffic 
lights to increase the effectiveness of the traffic control system. 
The paper explains the method we used to quantify the traffic 
scenario into different matrices which fed to the model as states 
which reduces the load of computing as compared to images. 
After 2000 iterations of training, our deep reinforcement learning 
model was able to reduce the cumulative waiting time of all the 
vehicles at the Pulai Perdana intersection by 47.31% as 
compared to a fixed time algorithm and can perform even when 
the traffic is skewed in a different direction. When the traffic is 
scaled down to 50% and 20 %, the agent continues to improve 
the waiting time by 69.5% and 68.36 % respectively. 

Keywords— Traffic Light Control, Deep Reinforcement 
Learning, SUMO  

I.  Introduction  
The creation of traffic lights creates an equal opportunity 

to cross an intersection, but conventional traffic control 
systems only causes traffic congestion, which impedes the 
flow and causes many problems for the general commuters. 
Traffic jams are often associated with lost in productivity, 
frustration and accidents. It has also led to several serious 
social problems such as long travelling times, increased fuel 
consumption and air pollution. (Gao, Shen, Liu, Ito, & 
Shiratori, 2017). According to another study done by Boston 
Consulting Group (BCG) known as “Unlocking Cities”, they 

showed that drivers in Kuala Lumpur spend about 53 minutes 
stuck in traffic jams every day. That roughly sums up to 13.4 
days in total spent in traffic in a year. 
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Traffic problem is a very complex issue since it involves 
many parameters. Firstly, it is heavily dependent on the time 
of day and week, general during rush hours, which is in the 
morning or afternoon, the traffic flow is severely increased 
because users need to get to or off work. Weekends generally 
show a decrease in traffic loads. Secondly, existing traffic 
light control either deploys fixed programs without 
considering real-time traffic or considering the traffic to a very 
limited degree (Liang, Du, Wang, & Han, 2018). 

Adaptive traffic signal control, which adjusts traffic signal 
timing according to real-time traffic, has been shown to be an 
effective method to reduce traffic congestion. With recent 
advancements in Machine Learning technology, many 
researchers have shown interest in the capabilities of Deep 
Learning and Reinforcement learning since they are able to be 
able to learn through a large set of data unsupervised. In recent 
developments, we can see machine learning algorithms being 
able to surpass human level intelligence in the game of 
AlphaGo. 

Recently, more and more studies on smart traffic light 
control system have been conducted. Many researchers now 
believe that machine learning algorithms can improve traffic 
light control and management. Furthermore, with the 
advancements in hardware and algorithms within the recent 
years, deep learning algorithms are also being experimented as 
well, this will be discussed in depth within the report. 
Generally, fixed time traffic signals are being deployed in 
urban area`s due to its regularity and predictability. Some 
traffic signals deliberately stop drivers from experiencing a 
string of green lights, thus discouraging high volumes of 
traffic while still preventing congestion. Inductive loops, as 
seen in the figure above, are generally used to keep traffic 
flowing in the main roads of traffic and to detect if there are 
vehicles waiting to cross from the side roads. It can also 
reduce waiting time at the traffic intersection. It can also be 
used to change or lengthen traffic light phases if the que is 
longer. 

In terms of Deep Reinforcement Learning, Li, Lv, and 
Wang (2016) proposed to use a deep stacked autoencoders 
(SAE) neural network to estimate the Q function, the neural 
net can take massive amounts of input states and return the 
possible Q value for each possible action. Genders and Razavi 
(2016) has shown that convolutional neural networks (CNN) 
can be used to approximate the optimal Q values. One of the 
most obvious contribution from their study is the use of 
discrete traffic state encoding (DTSE) as a better 
representation of traffic information. (Liang et al., 2018) 



 

19 
 

International Journal of Advances in Computer Science & Its Applications – IJCSIA 
Copyright © Institute of Research Engineers and Doctors 

Volume 9 : Issue 2-  [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019 

 
 further improved the use of deep reinforcement learning in 

traffic light controls by introducing Double Dueling Deep Q 
Networks called (3DQN). 

This research propose a deep reinforcement learning 
algorithm that can extract all key features useful for adaptive 
traffic signal control from raw real-time traffic data. By 
extracting useful features such as the position and speed of the 
cars and allow further process of the data by the deep 
reinforcement learning algorithm, we will be able to make 
proper decisions that will allow traffic to be monitored and 
controlled more effectively. With deep reinforcement learning, 
the traffic lights will be able to learn from real time traffic 
conditions and make decisions better from previous sample 
data it has collected, which makes it more “experienced” it’s 

management of the traffic junction the longer it operates. 

 

II.  Methodology 
The simulation tool, Simulation of Urban Mobility 

(SUMO), will be used to simulate the junction at Pulai 
Perdana, a heavily congested intersection in Johor Bahru, 
Johor as accurately as possible. Python will also be utilized to 
interface with the simulation software and deploy deep 
reinforcement learning to actuate the traffic signals. In Python, 
the deep learning library Keras will also be used to allow the 
algorithm to learn from its actions.  

 
Figure 1.    Simulation Software Architecture. 

A. Problem Definition 
In the table shown below, LE1 depicts traffic coming from 

Pontian where are LE3 shows traffic from Skudai. LE2 on the 
other hand shows traffic coming from Persiaran Pulai Perdana 
and LE4 shows traffic coming from Jalan Teratai. Each 
junction will be simulated to have 3 lanes in the departure 
junction and 2 lanes in the arrival junction as shown in Figure 
2. The traffic data was obtained for an hour at the said 
intersection. 

TABLE I.    TRAFFIC INFORMATION AT PULAI PERDANA INTERSECTION 

Junction Number of cars per 
hour 

Green Signal 
Duration(s) 

LE1 1076 100 

LE2 796 38 

LE3 1345 79 

LE4 581 38 

 

B. Vehicle Arrival Process 
The traffic conditions are simulated based on Mathew 

(2014), which shows the method of simulating traffic flow 
through the use of random variates that follows the Poisson 
distribution to generate vehicles that arrives in a given time 
interval so that it follows a typical vehicle arrival process. In 
the SUMO simulation software, the traffic information is read 
from the route.xml file. 

 

Figure 2.    Illustration of vehicles arriving modelling. 
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                                         ( ) 

 Equation (1) is the probability of the density function.    

C. States 
The studies done by Genders and Razavi (2016), they 

utilized their discrete traffic state encoding (DTSE) method 
which allows them to retain useful traffic information. The 
agent will observe the states to be St= (P, V, L) ∈S for signal 
control. The states will then be used as what the DQNAgent 
“sees”, the environment encoded into a matrix for the agent to 
make sense of the environment and make decisions based on 
the states. Figure 3 shows how the agent observes the 
environment, the agent creates a Boolean value of 1 when it 
detects a car if present within the cell length, the velocity 
matrix is also obtained by dividing the actual speed of the 
vehicle with the max allowable speed. The states allow the 
agent to perceive the entirety of the environment through the 
use of matrices instead of whole images in efforts to reduce 
computational difficulty. 
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 Figure 3.     (a) Example of simulated traffic (b) with corresponding Boolean 

(c) and real-valued velocity vectors. 
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D. Convolutional Neural Network 
After observing the states, the agent will be able to take an 

action based on what it “sees”. The process of seeing involves 

the use of a Convolutional Neural Network that allows 
extraction of important features from the state matrices. 

The input states or the agent’s observed states are 

positionMatrix, VelocityMatrix and lgts. The first layer of 
convolution has 16 filters of 4x4 with stride of 2 and it uses 
ReLU (Rectified Linear Units) as the activation function. The 
second layer has 32 filters of size 2x2 with a stride of 1 and 
uses ReLU. The 3rd and 4th layers are fully connected layers 
with a size of 128 and 64 respectively. The final layer is then a 
layer with a linear output that outputs the Q value that 
corresponds to every possible action. 

E. Action 
When the green light interval ends, the current time step t 

ends and a new time step begins. The agent then proceeds to 
observe a new time step and chooses the next action. The same 
actions may be chosen across time steps, which will cause the 
green light interval to run again for another 10 seconds. 
However, if the action selected is different from the previous 
action, which is to change the traffic signals. The yellow lights 
will be actuated for the junction for 3 seconds before actuating 
the green light. Since the agent’s goal is to reduce the overall 

waiting time, the agent will need to find an action policy as 
denoted in (E) that maximizes the following cumulative future 
rewards. . After observing a given state, the agent decides to 
take an action based on an action policy π. 

F. Rewards 
One of the biggest differentiators between reinforcement 

learning and other learning algorithms is the rewards. Rewards 
functions as a feedback system to allow the model to access its 
performance based on its previous actions. Since the main goal 
is to see if the model can increase the efficiency of the traffic 
light control system, the main parameters that can best reflect 
the efficiency is the vehicle waiting time. Thus, we define 
rewards as the difference in cumulative waiting time between 
active and number of vehicles previously in the inactive 
traffic, where r1 is the cumulative number of vehicles at a 
given active junction and r2 is the cumulative waiting time of 
idle vehicles waiting at the inactive junction. 

 

 

Figure 4.    Convolutional neural network approximating the Q values. 

TABLE II.    TRAFFIC LIGHT PHASES FOR SIMULATED LANES. 
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The reward is then calculated after the agent finishes its 
action step, which in this case, the reward will be calculated 
after the 10 second period of actuation of the green light. Then 
the reward will be reset to zero once the traffic agent changes 
the phase and restarted once again. 



 

21 
 

International Journal of Advances in Computer Science & Its Applications – IJCSIA 
Copyright © Institute of Research Engineers and Doctors 

Volume 9 : Issue 2-  [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019 

 
 G. Agent Hyperparameters 

The greedy epsilon algorithm is deployed, where the value 
of ε is 1.0 in the beginning to assume explorative behaviors, 
however, the value of epsilon starts to decay at a rate of 99.5% 
every single time the states are observed until it reaches the 
minimum value of 0.01, where the agent starts to change from 
taking explorative actions to exploitative one. The discount 
factor for future rewards is set at 0.95. The optimizer selected 
will be the Root Mean Squared Prop (RMSProp) algorithm, 
which uses a moving average of squared gradients to 
normalize the gradient itself, the algorithm is a stochastic 
technique for mini-batch learning. The learning rate for the 
RMSProp algorithm is set at 0.0002 for optimal results as 
mentioned in the previous chapter.  The capacity of replay 
memory is also set at 200 to minimize memory usage. 

H. Agent Training 
The agent will be trained for 2000 episodes, each episode 

corresponds to 1 hour. We first initialize the neural network 
with random weights. At the start of each time step, the agent 
observes the current time step St and the input is fed into the 
neural network and performs an action at that will provide the 
highest cumulative future reward. The agent then receives a 
reward Rt and proceeds to obtain the next step St+1 in the 
environment. These information (St, At, Rt, St+1) are stored 
as experiences in its memory. As the memory is limited in size, 
the oldest data is deleted when the memory is full. The DNN 
is then trained by extracting training examples from the 
memory. This is known as experience replay. The agent then 
proceeds to learn features \theta, by training the DNN network 
to minimize the following Mean Squared Error (MSE), as in 

   ( )  
 

 
∑{(         

  
 (             ))   (      )}
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Since m is the size of the input data set, which in our case 
is very large, it would be very computationally expensive to 
calculate. Hence, we will use the stochastic gradient descent 
algorithm RMSProp with a minibatch of 32 as mentioned 
before. 

III. Results & Discussion 
By examining our simulation data shown in figure 5 & 6, 

we were able to show that the algorithm is indeed in the right 
path in learning a good action selection policy that effectively 
reduces the cumulative vehicle waiting time at the traffic 
lights. Our algorithm’s results start to converge midway 

through the episodes and becomes more stable. 

During the training, the minimum cumulative waiting time 
achieved was 115882 seconds. The average value of the 
cumulative waiting time of all vehicles at the junction is 
203221 second. 

At 200 episodes, we see the waiting time of vehicles at a 
junction gradually reducing as the agent finds suitable action 
policies that allows it to make better decisions. The spikes in 
the graphs shows that the explorative nature of the agent 
allows it to try out different actions, not necessarily resulting 
in reduction in waiting time but crucial for exploring different 
actions that may give positive results. At 800 episodes, we see 
the results start to converge and the waiting time starts to 
stabilize from this episode onwards. The stabilizing 
mechanisms such as the experience replay is proven to be 
effective in stabilizing the action selection policy. 

 
Figure 5.    Graph of Cumulative Waiting Time Against Epoch 

 
Figure 6.    Graph of Total Rewards Time Against Epoch 

After running the training for 2000 episode, the agent 
learnt a good action selection policy and managed to reduce 
the cumulative waiting time. The agent is now used to run the 
simulation once again using several carrying traffic conditions 
and compared to the fixed time algorithm. The agent is tested 
on high traffic conditions, high traffic conditions with traffic 
skewed to another direction, medium traffic conditions and 
low traffic conditions in comparison with the fixed time 
algorithm to evaluate its performance improvement as 
compared to the fixed time algorithm. 

The skewed traffic will be simulated by adjusting the 
heavy traffic to lanes LE2 and LE4 instead of LE1 and LE3. 
The medium traffic and low traffic are assumed at 50% and 20% 
of the high traffic volume. The next table shows the simulated 
result using the final weights of the algorithm after 2000 
episodes of training. 
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 TABLE III.     CUMULATIVE WAITING TIME FOR DIFFERENT ALGORITHMS AND 

TRAFFIC HEAVINESS. 

Traffic 
Heaviness 

Number of cars in one hour in 
given lane 

Cumulative Waiting 
Time (s) 

LE1 LE2 LE3 LE4 Agent Fixed time 
algorithm 

High 1076 796 1345 581 213696 405587 

High 
(skewed 
traffic) 

581 1076 796 1345 214522 704820 

Medium  538 398 673 291 48592 153566 

Low 215 159 269 116 18206 59549 

Based on the results shown above, it is clear that the agent 
outperforms the fixed time algorithm in every type of traffic 
heaviness, where in high traffic conditions, high traffic 
conditions with skewed traffic, medium traffic conditions and 
low traffic conditions, there is a 47.31 %, 69.56% ,68.36 % 
and 69.43 % reduction in waiting time respectively. The fixed 
time algorithm fairs well at high traffic conditions, however, 
as the signal timing is set to meet the demand of the 
intersection, it’s performance greatly reduces when the traffic 

is skewed to another direction. Although the number of cars 
passing through the intersection is the same, the fixed time 
algorithm can’t handle the change in direction of the traffic 

heaviness as it is preset to a certain timing algorithm. The 
agent on the other hand is adaptive to traffic and was able to 
keep the cumulative waiting time a constant value of 213696s 
and 214522s. This show’s that the agent is adaptive and can 

execute a traffic control policy to solve the current traffic 
conditions. 

When the traffic heaviness is reduced to 50% and 20% 
respectively, we can see that the performance of the agent is 
68.36% and 69.43% better than the fixed time algorithm. The 
performance is also better as compared to the high traffic 
conditions. The fixed time algorithm is not suited to adapt to 
the everchanging traffic heaviness, especially at lower traffic 
conditions. 

IV. Conclusion 
In this paper, we proposed to solve the traffic light control 

problem at the Pulai Perdana intersection using a deep 
reinforcement learning model. This research study was a 
success with all objectives achieved. The research started with 
the notion that artificial intelligence could one day be used as 
an agent to manage a traffic intersection by controlling the 
traffic lights. It is proven in the experiment that a deep 
reinforcement learning model was able to reduce the 
cumulative waiting time of all the vehicles at a given traffic 
intersection as compared to a fixed time algorithm-based 
traffic management system at Pulai Perdana by 47.31%. 
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