

18

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

 DEEP REINFORCEMENT LEARNING BASED

TRAFFIC CONTROL SYSTEM

 Bryan Chua Seck How, Kamarulafizam Ismail*, Ng Ting Sheng, Fazila Mohd Zawawi

Abstract— Existing traffic light controls are ineffective and
causes a handful of problems such as congestion and pollution.
The purpose of this study is to investigate the application of deep
reinforcement learning on traffic control systems to minimize
congestion at a targeted traffic intersection. The traffic data was
extracted, analyzed and simulated based on the Poisson
Distribution, using a simulator, Simulation of Urban Mobility
(SUMO). In this research, we proposed a deep reinforcement
learning model, which combines the capabilities of convolutional
neural networks and reinforcement learning to control the traffic
lights to increase the effectiveness of the traffic control system.
The paper explains the method we used to quantify the traffic
scenario into different matrices which fed to the model as states
which reduces the load of computing as compared to images.
After 2000 iterations of training, our deep reinforcement learning
model was able to reduce the cumulative waiting time of all the
vehicles at the Pulai Perdana intersection by 47.31% as
compared to a fixed time algorithm and can perform even when
the traffic is skewed in a different direction. When the traffic is
scaled down to 50% and 20 %, the agent continues to improve
the waiting time by 69.5% and 68.36 % respectively.

Keywords— Traffic Light Control, Deep Reinforcement
Learning, SUMO

I. Introduction
The creation of traffic lights creates an equal opportunity

to cross an intersection, but conventional traffic control
systems only causes traffic congestion, which impedes the
flow and causes many problems for the general commuters.
Traffic jams are often associated with lost in productivity,
frustration and accidents. It has also led to several serious
social problems such as long travelling times, increased fuel
consumption and air pollution. (Gao, Shen, Liu, Ito, &
Shiratori, 2017). According to another study done by Boston
Consulting Group (BCG) known as “Unlocking Cities”, they

showed that drivers in Kuala Lumpur spend about 53 minutes
stuck in traffic jams every day. That roughly sums up to 13.4
days in total spent in traffic in a year.

Bryan Chua Seck How

School of Mechanical Engineering, Universiti Teknologi Malaysia
Malaysia

Kamarulafizam Ismail1,2
1Media and Game Centre of Excellent, Institute of Human Centered
Engineering, Universiti Teknologi Malaysia
2School of Mechanical Engineering, Universiti Teknologi Malaysia
Malaysia

Traffic problem is a very complex issue since it involves
many parameters. Firstly, it is heavily dependent on the time
of day and week, general during rush hours, which is in the
morning or afternoon, the traffic flow is severely increased
because users need to get to or off work. Weekends generally
show a decrease in traffic loads. Secondly, existing traffic
light control either deploys fixed programs without
considering real-time traffic or considering the traffic to a very
limited degree (Liang, Du, Wang, & Han, 2018).

Adaptive traffic signal control, which adjusts traffic signal
timing according to real-time traffic, has been shown to be an
effective method to reduce traffic congestion. With recent
advancements in Machine Learning technology, many
researchers have shown interest in the capabilities of Deep
Learning and Reinforcement learning since they are able to be
able to learn through a large set of data unsupervised. In recent
developments, we can see machine learning algorithms being
able to surpass human level intelligence in the game of
AlphaGo.

Recently, more and more studies on smart traffic light
control system have been conducted. Many researchers now
believe that machine learning algorithms can improve traffic
light control and management. Furthermore, with the
advancements in hardware and algorithms within the recent
years, deep learning algorithms are also being experimented as
well, this will be discussed in depth within the report.
Generally, fixed time traffic signals are being deployed in
urban area`s due to its regularity and predictability. Some
traffic signals deliberately stop drivers from experiencing a
string of green lights, thus discouraging high volumes of
traffic while still preventing congestion. Inductive loops, as
seen in the figure above, are generally used to keep traffic
flowing in the main roads of traffic and to detect if there are
vehicles waiting to cross from the side roads. It can also
reduce waiting time at the traffic intersection. It can also be
used to change or lengthen traffic light phases if the que is
longer.

In terms of Deep Reinforcement Learning, Li, Lv, and
Wang (2016) proposed to use a deep stacked autoencoders
(SAE) neural network to estimate the Q function, the neural
net can take massive amounts of input states and return the
possible Q value for each possible action. Genders and Razavi
(2016) has shown that convolutional neural networks (CNN)
can be used to approximate the optimal Q values. One of the
most obvious contribution from their study is the use of
discrete traffic state encoding (DTSE) as a better
representation of traffic information. (Liang et al., 2018)

19

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

 further improved the use of deep reinforcement learning in

traffic light controls by introducing Double Dueling Deep Q
Networks called (3DQN).

This research propose a deep reinforcement learning
algorithm that can extract all key features useful for adaptive
traffic signal control from raw real-time traffic data. By
extracting useful features such as the position and speed of the
cars and allow further process of the data by the deep
reinforcement learning algorithm, we will be able to make
proper decisions that will allow traffic to be monitored and
controlled more effectively. With deep reinforcement learning,
the traffic lights will be able to learn from real time traffic
conditions and make decisions better from previous sample
data it has collected, which makes it more “experienced” it’s

management of the traffic junction the longer it operates.

II. Methodology
The simulation tool, Simulation of Urban Mobility

(SUMO), will be used to simulate the junction at Pulai
Perdana, a heavily congested intersection in Johor Bahru,
Johor as accurately as possible. Python will also be utilized to
interface with the simulation software and deploy deep
reinforcement learning to actuate the traffic signals. In Python,
the deep learning library Keras will also be used to allow the
algorithm to learn from its actions.

Figure 1. Simulation Software Architecture.

A. Problem Definition
In the table shown below, LE1 depicts traffic coming from

Pontian where are LE3 shows traffic from Skudai. LE2 on the
other hand shows traffic coming from Persiaran Pulai Perdana
and LE4 shows traffic coming from Jalan Teratai. Each
junction will be simulated to have 3 lanes in the departure
junction and 2 lanes in the arrival junction as shown in Figure
2. The traffic data was obtained for an hour at the said
intersection.

TABLE I. TRAFFIC INFORMATION AT PULAI PERDANA INTERSECTION

Junction Number of cars per
hour

Green Signal
Duration(s)

LE1 1076 100

LE2 796 38

LE3 1345 79

LE4 581 38

B. Vehicle Arrival Process
The traffic conditions are simulated based on Mathew

(2014), which shows the method of simulating traffic flow
through the use of random variates that follows the Poisson
distribution to generate vehicles that arrives in a given time
interval so that it follows a typical vehicle arrival process. In
the SUMO simulation software, the traffic information is read
from the route.xml file.

Figure 2. Illustration of vehicles arriving modelling.

 ()

 ()

 Equation (1) is the probability of the density function.

C. States
The studies done by Genders and Razavi (2016), they

utilized their discrete traffic state encoding (DTSE) method
which allows them to retain useful traffic information. The
agent will observe the states to be St= (P, V, L) ∈S for signal
control. The states will then be used as what the DQNAgent
“sees”, the environment encoded into a matrix for the agent to
make sense of the environment and make decisions based on
the states. Figure 3 shows how the agent observes the
environment, the agent creates a Boolean value of 1 when it
detects a car if present within the cell length, the velocity
matrix is also obtained by dividing the actual speed of the
vehicle with the max allowable speed. The states allow the
agent to perceive the entirety of the environment through the
use of matrices instead of whole images in efforts to reduce
computational difficulty.

20

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

 Figure 3. (a) Example of simulated traffic (b) with corresponding Boolean

(c) and real-valued velocity vectors.

 [

] , [

] [

]

D. Convolutional Neural Network
After observing the states, the agent will be able to take an

action based on what it “sees”. The process of seeing involves

the use of a Convolutional Neural Network that allows
extraction of important features from the state matrices.

The input states or the agent’s observed states are

positionMatrix, VelocityMatrix and lgts. The first layer of
convolution has 16 filters of 4x4 with stride of 2 and it uses
ReLU (Rectified Linear Units) as the activation function. The
second layer has 32 filters of size 2x2 with a stride of 1 and
uses ReLU. The 3rd and 4th layers are fully connected layers
with a size of 128 and 64 respectively. The final layer is then a
layer with a linear output that outputs the Q value that
corresponds to every possible action.

E. Action
When the green light interval ends, the current time step t

ends and a new time step begins. The agent then proceeds to
observe a new time step and chooses the next action. The same
actions may be chosen across time steps, which will cause the
green light interval to run again for another 10 seconds.
However, if the action selected is different from the previous
action, which is to change the traffic signals. The yellow lights
will be actuated for the junction for 3 seconds before actuating
the green light. Since the agent’s goal is to reduce the overall

waiting time, the agent will need to find an action policy as
denoted in (E) that maximizes the following cumulative future
rewards. . After observing a given state, the agent decides to
take an action based on an action policy π.

F. Rewards
One of the biggest differentiators between reinforcement

learning and other learning algorithms is the rewards. Rewards
functions as a feedback system to allow the model to access its
performance based on its previous actions. Since the main goal
is to see if the model can increase the efficiency of the traffic
light control system, the main parameters that can best reflect
the efficiency is the vehicle waiting time. Thus, we define
rewards as the difference in cumulative waiting time between
active and number of vehicles previously in the inactive
traffic, where r1 is the cumulative number of vehicles at a
given active junction and r2 is the cumulative waiting time of
idle vehicles waiting at the inactive junction.

Figure 4. Convolutional neural network approximating the Q values.

TABLE II. TRAFFIC LIGHT PHASES FOR SIMULATED LANES.

LE1 LE2 LE3 LE4

L
0

L1 L2

L0
L1 L2

L0

L1 L2

L
0

L
1

L2

Phase
0 G G G r r r r r r r r r

Phase
1 y y y r r r r r r r r r

Phase
2

r r r G G G r r r r r r

Phase
3

r r r y y y r r r r r r

Phase
4

r r r r r r G G G r r r

Phase
5

r r r r r r y y y r r r

Phase
6

r r r r r r r r r G G G

Phase
7

r r r r r r r r r y y y

 ()

The reward is then calculated after the agent finishes its
action step, which in this case, the reward will be calculated
after the 10 second period of actuation of the green light. Then
the reward will be reset to zero once the traffic agent changes
the phase and restarted once again.

21

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

 G. Agent Hyperparameters

The greedy epsilon algorithm is deployed, where the value
of ε is 1.0 in the beginning to assume explorative behaviors,
however, the value of epsilon starts to decay at a rate of 99.5%
every single time the states are observed until it reaches the
minimum value of 0.01, where the agent starts to change from
taking explorative actions to exploitative one. The discount
factor for future rewards is set at 0.95. The optimizer selected
will be the Root Mean Squared Prop (RMSProp) algorithm,
which uses a moving average of squared gradients to
normalize the gradient itself, the algorithm is a stochastic
technique for mini-batch learning. The learning rate for the
RMSProp algorithm is set at 0.0002 for optimal results as
mentioned in the previous chapter. The capacity of replay
memory is also set at 200 to minimize memory usage.

H. Agent Training
The agent will be trained for 2000 episodes, each episode

corresponds to 1 hour. We first initialize the neural network
with random weights. At the start of each time step, the agent
observes the current time step St and the input is fed into the
neural network and performs an action at that will provide the
highest cumulative future reward. The agent then receives a
reward Rt and proceeds to obtain the next step St+1 in the
environment. These information (St, At, Rt, St+1) are stored
as experiences in its memory. As the memory is limited in size,
the oldest data is deleted when the memory is full. The DNN
is then trained by extracting training examples from the
memory. This is known as experience replay. The agent then
proceeds to learn features \theta, by training the DNN network
to minimize the following Mean Squared Error (MSE), as in

 ()

∑{(

 ()) ()}

()

Since m is the size of the input data set, which in our case
is very large, it would be very computationally expensive to
calculate. Hence, we will use the stochastic gradient descent
algorithm RMSProp with a minibatch of 32 as mentioned
before.

III. Results & Discussion
By examining our simulation data shown in figure 5 & 6,

we were able to show that the algorithm is indeed in the right
path in learning a good action selection policy that effectively
reduces the cumulative vehicle waiting time at the traffic
lights. Our algorithm’s results start to converge midway

through the episodes and becomes more stable.

During the training, the minimum cumulative waiting time
achieved was 115882 seconds. The average value of the
cumulative waiting time of all vehicles at the junction is
203221 second.

At 200 episodes, we see the waiting time of vehicles at a
junction gradually reducing as the agent finds suitable action
policies that allows it to make better decisions. The spikes in
the graphs shows that the explorative nature of the agent
allows it to try out different actions, not necessarily resulting
in reduction in waiting time but crucial for exploring different
actions that may give positive results. At 800 episodes, we see
the results start to converge and the waiting time starts to
stabilize from this episode onwards. The stabilizing
mechanisms such as the experience replay is proven to be
effective in stabilizing the action selection policy.

Figure 5. Graph of Cumulative Waiting Time Against Epoch

Figure 6. Graph of Total Rewards Time Against Epoch

After running the training for 2000 episode, the agent
learnt a good action selection policy and managed to reduce
the cumulative waiting time. The agent is now used to run the
simulation once again using several carrying traffic conditions
and compared to the fixed time algorithm. The agent is tested
on high traffic conditions, high traffic conditions with traffic
skewed to another direction, medium traffic conditions and
low traffic conditions in comparison with the fixed time
algorithm to evaluate its performance improvement as
compared to the fixed time algorithm.

The skewed traffic will be simulated by adjusting the
heavy traffic to lanes LE2 and LE4 instead of LE1 and LE3.
The medium traffic and low traffic are assumed at 50% and 20%
of the high traffic volume. The next table shows the simulated
result using the final weights of the algorithm after 2000
episodes of training.

22

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 2- [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019

 TABLE III. CUMULATIVE WAITING TIME FOR DIFFERENT ALGORITHMS AND

TRAFFIC HEAVINESS.

Traffic
Heaviness

Number of cars in one hour in
given lane

Cumulative Waiting
Time (s)

LE1 LE2 LE3 LE4 Agent Fixed time
algorithm

High 1076 796 1345 581 213696 405587

High
(skewed
traffic)

581 1076 796 1345 214522 704820

Medium 538 398 673 291 48592 153566

Low 215 159 269 116 18206 59549

Based on the results shown above, it is clear that the agent
outperforms the fixed time algorithm in every type of traffic
heaviness, where in high traffic conditions, high traffic
conditions with skewed traffic, medium traffic conditions and
low traffic conditions, there is a 47.31 %, 69.56% ,68.36 %
and 69.43 % reduction in waiting time respectively. The fixed
time algorithm fairs well at high traffic conditions, however,
as the signal timing is set to meet the demand of the
intersection, it’s performance greatly reduces when the traffic

is skewed to another direction. Although the number of cars
passing through the intersection is the same, the fixed time
algorithm can’t handle the change in direction of the traffic

heaviness as it is preset to a certain timing algorithm. The
agent on the other hand is adaptive to traffic and was able to
keep the cumulative waiting time a constant value of 213696s
and 214522s. This show’s that the agent is adaptive and can

execute a traffic control policy to solve the current traffic
conditions.

When the traffic heaviness is reduced to 50% and 20%
respectively, we can see that the performance of the agent is
68.36% and 69.43% better than the fixed time algorithm. The
performance is also better as compared to the high traffic
conditions. The fixed time algorithm is not suited to adapt to
the everchanging traffic heaviness, especially at lower traffic
conditions.

IV. Conclusion
In this paper, we proposed to solve the traffic light control

problem at the Pulai Perdana intersection using a deep
reinforcement learning model. This research study was a
success with all objectives achieved. The research started with
the notion that artificial intelligence could one day be used as
an agent to manage a traffic intersection by controlling the
traffic lights. It is proven in the experiment that a deep
reinforcement learning model was able to reduce the
cumulative waiting time of all the vehicles at a given traffic
intersection as compared to a fixed time algorithm-based
traffic management system at Pulai Perdana by 47.31%.

V. Acknowledgment
The author would like to thank Universiti Teknologi Malaysia
for funding this research through Research University Grant

(RJ130000.2424.03G98) and the ministry of Education
Malaysia

VI. References
[1] Gao, J., Shen, Y., Liu, J., Ito, M., & Shiratori, N. (2017). Adaptive

Traffic Signal Control: Deep Reinforcement Learning Algorithm with
Experience Replay and Target Network. arXiv preprint
arXiv:1705.02755.

[2] Genders, W., & Razavi, S. (2016). Using a deep reinforcement learning
agent for traffic signal control. arXiv preprint arXiv:1611.01142.

[3] Ghazal, B., ElKhatib, K., Chahine, K., & Kherfan, M. (2016). Smart
traffic light control system. Paper presented at the Electrical,
Electronics, Computer Engineering and their Applications (EECEA),
2016 Third International Conference on.

[4] Goel, A., & Kumar, P. J. A. E. (2015). Characterisation of nanoparticle
emissions and exposure at traffic intersections through fast–response
mobile and sequential measurements. 107, 374-390.

[5] Li, L., Lv, Y., & Wang, F.-Y. (2016). Traffic signal timing via deep
reinforcement learning. IEEE/CAA Journal of Automatica Sinica, 3(3),
247-254.

[6] Liang, X., Du, X., Wang, G., & Han, Z. (2018). Deep reinforcement
learning for traffic light control in vehicular networks. arXiv preprint
arXiv:1803.11115.

[7] Mathew, D. T. V. (2014). Transportation Systems Engineering, Chapter
13: Vehicle Arrival Models: Count.

[8] Özlü, A. (2017). Vehicle Detection, Tracking and Counting.
https://github.com/ahmetozlu/vehicle_counting

[9] Tahifa, M., Boumhidi, J., & Yahyaouy, A. (2015). Swarm
reinforcement learning for traffic signal control based on cooperative
multi-agent framework. Paper presented at the Intelligent Systems and
Computer Vision (ISCV), 2015.

[10] Van der Pol, E., & Oliehoek, F. A. (2016). Coordinated deep
reinforcement learners for traffic light control. Proceedings of Learning,
Inference and Control of Multi-Agent Systems (at NIPS 2016).

[11] Zhang, S., & Sutton, R. S. J. a. p. a. (2017). A deeper look at
experience replay.

