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Abstract — We study mechanism design problem for capacity 

transfer among M/M/1 queueing systems with private 
information. We propose an iterative mechanism, which is shown 
to simultaneously satisfy strategy-proofness, budget balance, 
individual rationality, and convergence. Finally, we conduct 
numerical studies to evaluate the performance of the proposed 
mechanism.  
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I.  Introduction 
Cooperation among different queueing systems through 

capacity transfer has served as an effective way for queueing 
systems to increase their capacity utilization. Most literature 
on cooperating queueing systems assume that information 
involved is public, for example, see Anily and Haviv (2010), 
Zeng et al. (2018). In some cases, however, the queueing 
systems involved may have private information that cannot be 
verified by other parties. For instance, in the example wherein 
different clinics share their staff members, each clinic may 
have different unit congestion cost and this information may 
be private. In these situations, appropriate mechanisms are 
needed to incentivize these systems to share information and 
exert cooperative efforts.  

Some desirable properties of a mechanism include 
efficiency, strategy-proofness (or dominant strategy incentive 
compatibility), budget balance, and individual rationality. An 
efficient mechanism maximizes the total value over all agents. 
A strategy-proof mechanism can neutralize the complications 
that strategic misrepresentation creates in the situations with 
private information, since in a strategy proof mechanism, truth 
telling is every agent’s dominant strategy. Budget balance of a 
mechanism ensures that no net payment made both from 
agents to the mechanism and from the mechanism to the 
agents. Finally, individual rationality makes sure that an agent 
achieves as much utility from in the mechanism as outside the 
mechanism.  

In this paper, we focus on designing mechanisms 
satisfying these desirable properties. More specifically, we 
propose an iterative mechanism for capacity transfer among 
M/M/1 queueing systems with private information. This 
mechanism is shown to satisfy strategy-proofness, budget 
balance, individual rationality, and convergence, 
simultaneously. Finally, we conduct numerical studies to 
evaluate performance of the proposed mechanism.  

 

II. Literature Review 
Our study in this paper is related to the stream of study on 

the iterative mechanisms. Mechanism design literature is 
mainly focused on direct-revelation mechanisms like VCG 
mechanisms. Despite some attractive features of the VCG 
mechanisms, it has some drawbacks, such as requiring the 
agents to report their complete information and failing to 
simultaneously satisfy efficiency, strategy proofness, budget 
balance and individual rationality; it has been argued that an 
iterative version of the VCG mechanism would be preferable 
to its direct-revelation counterpart (Vohra, 2011).  

One iterative mechanism is proposed by Dreze and de la 
Vallee Poussin (1971), in which each agent announces 
“gradient” information about his preferences for different 
outcomes. If the agents report truthful information, this 
iterative procure is Pareto optimal. Parkes (1999) proposes an 
efficient ascending-price (iterative) auction called iBundle for 
the combinatorial allocation problem, with myopic best-
response agent strategies. The auction is weak budget-
balanced, and individual-rational.  

In the literature, it is also very common to design price-
based iterative mechanisms to converge to competitive 
equilibrium (CE) prices. For example, Demange, Gale and 
Sotomayor (1986) show that for the multi-item auction, the 
minimum equilibrium price allocation can be achieved 
(approximately) by “progressive” auctions. They define a 
minimal update by gradually increasing the prices on a 
minimal over-demanded set of items, and these updates drive 
prices towards minimal CE prices. Later Gul and Stacchetti 
(2000) generalize the auction studied in Demange, Gale and 
Sotomayor (1986) for economies with substitutes. de Vries, 
Schummer and Vohra (2007) further generalize this to define 
minimal updates in terms of minimally under-supplied 
bidders, by gradually increasing the prices on the bundles in a 
minimally under-supplied set for which bidders submitted a 
bid.  
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III. Problem Definition 
We revisit the capacity transfer problem among M/M/1 

systems in Zeng et al. (2018). In particular, in order to obtain 
non-trivial results, we focus on the special case wherein there 
is no capacity transfer cost. In Zeng et al. (2018), they study 
public information case, while in this paper we consider the 
case with private information. The specific problem is 
described as follows.  

Let N = {1, … , n} be a set of n service providers, each 
having its own service rate and customer arrival rate. The 
incoming stream of customers to service provider i ∈ N is 
assumed to be a Poisson process with rate   . Service time for 
service provider i ∈ N is exponentially distributed with mean 
1/   , and the service rate is    accordingly, where it is 
assumed that    >    for stability. The unit congestion cost for 
service provider i is   . If all information involved is public, 
the central planner solves the following capacity transfer 
problem for the grand coalition N:  

  ( )  
   

    ∈  
   
    
     

 

                                   s.t.  ∑    ∈ =∑    ∈ , 

                                               ∈    

where    is the service capacity of queue i after capacity 
transfer.  

The solution to this problem is calculated as  

        
√    ∑ (     ) ∈ 
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  ∈                 ( ) 

Recall that in Zeng et al. (2018), they propose a core cost 
allocation rule for capacity transfer among M/M/1 queueing 
systems. This cost allocation rule is defined as  

   
  

       
   (       )  ∈                     ( ) 

where    is the Lagrange multiplier w.r.t the first constraint,  
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(∑ (     ) ∈ ) 
                              ( ) 

This cost allocation rule in fact is a competitive allocation 
mechanism which calculates the market-clearing (competitive 
equilibrium) price to select a feasible, Pareto optimal 
allocation that varies with service providers’ information. The 
problem with this allocation mechanism is that each agent can 
misreport his information to the mechanism if the information 
is private to him and not verifiable. Therefore, he will tend to 
misreport whenever he realizes that doing so will result in a 
more preferable allocation than a truthful report. Hence, truth-
telling mechanisms are desirable in this case. In this paper, we 
seek to design strategy-proof mechanisms for queueing 
systems with private information.  

More specifically, in this paper, we consider the case 
wherein service provider i’s unit congestion cost    is his 
private information. For instance, in the example of 

transferring capacity among different clinics, each clinic’s 
congestion cost    may not be verifiable, and thus can be 
treated as private information. We assume that the service and 
arrival rate of each service provider is still public information. 
This assumption is realistic as service providers often 
advertise their service capacity publicly while arrival rates can 
usually be verified by other servers, and thus falsifying these 
information is difficult. If some information is private to each 
service provider, it is conceivable that a self-interested service 
provider may act strategically and misreport their private 
information if doing so is beneficial. Our goal is to design 
mechanisms such that service providers cooperate in a way to 
maximize the social welfare (minimizing the total cost). In the 
following, we design an iterative mechanism.  

IV. An Iterative Mechanism 
In this section, we seek to implement indirect mechanisms 

in which budget balance and individual rationality are sat- 
isfied, and the strategy-proofness and efficiency are 
maintained as well. Towards this end, we focus on price-based 
approaches, in which the central planner sets price iteratively 
to coordinate the process. The price we are interested in here is 
the competitive equilibrium (CE) price.  

A. Competitive Equilibrium (CE) Price  

The CE prices for a market with transferable payoff are 
equilibrium prices given rise to by freely interactions of agents 
in this market. Formally, a market with transferable payoff 
consists of a finite set N of agents, a positive integer l denoting 
the number of input goods, an endowment vector   ∈   

  for 
each agent i, and a production function       

     for each 
agent i. An profile (  ) ∈  of input vectors for which 
∑    ∈  ∑    ∈  is an allocation.  

A CE of a market with transferable payoff is defined as a 
pair (   , (  

 ) ∈ ) consisting of a price vector   for the 
resources and an allocation (  

 ) ∈  such that for each agent i, 
  
  solves the problem  

     ∈  (  (  )   
 (     ))  

The price vector    is then called the competitive prices. 
The idea of CE prices is that the agents in the market can trade 
resources at fixed prices, and these prices generates a CE if, 
when each agent chooses his trades to maximize his payoff, 
the resulting profile (  

 ) ∈  is feasible in the sense that it is an 
allocation. That is, this price    clears the market, wherein the 
quantity supplied is equal to the quantity demanded. In another 
sense, given the price vector   , the decentralized decisions of 
the agents coincide with the centralized decision.  

In summary, a CE should satisfy the following 
requirements:  

 Market Clearance: the demand equals the supply:  

∑  
 ∈ 

 ∑  
 ∈ 
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 Individual Rationality: all agents are better-off after 
the trade than before the trade:  

  (  
 )    (  

    )     (  )   ∈    

 Budget Balance: the total transfer payment is zero.  

∑  (  
    )    

 ∈ 

 

Because of these desirable properties of CE, we are 
interested in developing an price-based iterative mechanism to 
converge to CE prices.  

B. An CE Price-based Iterative 
Mechanism  
The scenario of capacity transfer in the M/M/1 setting can 

be modeled as a market with transferable payoff, which 
consists of: (1) a finite set of agents N ; (2) a positive integer l 
= 1 (the number of input goods); (3) for each agent i ∈ N an 
endowment of resource   ; (4) for each agent i ∈ N a 
continuous, non-increasing, and convex function       
   (the congestion cost function of agent i). A profile 
(  ) ∈ for the resource is called an allocation if ∑    ∈  
∑    ∈ .  

The CE of the M/M/1 capacity transfer market is a pair 
(  , (  

 ) ∈ ) consisting of a price    for the resource and an 
allocation (  

 ) ∈ ) which satisfies ∑   
 

 ∈  ∑    ∈ such 
that for each agent i ∈ N,   

 solves the problem  

   
     

(
    
     

   (     )) 

It can be easily calculated that the CE price of the capacity 
transfer problem in the M/M/1 setting for coalition N is 
exactly its Lagrangean multiplier defined by (3).  

Now we design a price-based iterative mechanism which 
converges to this CE price. In particular, the goal is to develop 
an iterative mechanism in which incremental revelation of 
truthful information is a dominant strategy in each step for 
every service provider.  

The CE price-based Iterative Mechanism:  

 1. Set an initial price    > 0, independent from all 
service providers’ private information. Set k = 1.  

 2. In each round k, given the price   , the service 
providers submit the amount of resources that they 
would like to sell/buy to the central planner.  

 3. If the total supplied amount > the total demanded 

amount, lower the price by    , i.e., set     =   −    ; 

otherwise, increase the price by    , i.e., set     = 

  +   . Set k = k + 1.  

 4. Repeat Steps 2 and 3 until the total supply is equal 

to the total demand. Then, match the supply and the 

demand, and stop.  

This iterative mechanism is convergent when the price 
incremental    is small enough. In particular, when the price 
incremental is set to be diminishing, e.g., 

 

√ 
 or 

 

 
 where c is a 

constant, then the iterative mechanism is guaranteed to be 
convergent.  

Theorem 1 With diminishing price incremental, e.g.,     
 

√ 
 

or 
 

 
, where c is a constant, the iterative mechanism is 

guaranteed to be convergent. In particular, the price    
converges to the CE price   .  

The proofs of this paper are omitted here and can be provided 
upon request. Besides convergence, this iterative mechanism 
has several other desirable properties as shown by the 
following theorem.  

Theorem 2 The proposed iterative mechanism satisfies 
efficiency, strategy-proofness, budget balance, individual 
rationality, and convergence.  

Hence, this iterative mechanism simultaneously satisfies 
the desirable properties such as efficiency, strategy-proofness, 
budget balance, and individual rationality. Moreover, it does 
not require the service providers provide their direct 
information (e.g., the unit congestion cost), only indirect 
information (e.g., the amount of resources to buy/sell is 
required).  

V. Numerical Studies 
In this section, we conduct numerical studies to evaluate 

the performance of the iterative mechanism, mainly looking at 
the speed of convergence.  

The speed of convergence for the iterative mechanism 
depends on two parameters: the initial price    and the price 
incremental    . The selection of a good initial price will 
depend on a good estimation of the unit congestion cost. For 
the price incremental, there is a trade-off between the 
calculating time of the mechanism and the convergence. A 
large price incremental may speed up the convergence of the 
iterative mechanism but it also exposes the mechanism to the 
risk of not being convergent. In this numerical study, we focus 
on this trade-off and gain some insights on how to choose the 
price incremental.  

Suppose there is a set of M/M/1 systems N = {1, 2, 3}. The 
unit congestion cost vector is h = (100, 200, 300), the arrival 
rate vector is λ = (1, 2, 3), and the service rate vector is μ = 
(1.25, 2.2222, 4.2857). If all information is public, the 
competitive equilibrium price of the capacity transfer market 
for these M/M/1 systems is  

   
(∑ √     ∈ )

 

(∑ (     ) ∈ ) 
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Now we implement the iterative mechanism to obtain this 
competitive price. We set the initial price    = 1000 and set 
the precision to be five decimals in the code. We test two 
types of price incremental: constant price incremental and 
diminishing price incremental.  

A. Constant Price Incremental 

Constant price incremental means that the price 
incrementals are the same in each iteration. For example, if the 
price incremental is set to be 0.1 at the very beginning, then it 
will remain unchanged throughout the mechanism.  

 
Figure 1. Descent Rate of the Mechanism under Different Price Incrementals 

Fig. 1 shows the descent rate of the iterative mechanism 
when the price incremental is set to be 0.01, 0.1 and 1, 
respectively. This figure describes the differences between the 
total supply and the total demand in the first 300 iterations, in 
which the slope of the curve can be viewed as the descent rate. 
It can be easily seen from this figure that roughly in the first 
160 iterations the descent rate is the largest when the price 
incremental is set to be 1. However, as the mechanism 
proceeds, the value of the difference between total demand 
and total supply fluctuates around zero, and thus the 
mechanism fails to converge in this case. Hence, it is not 
appropriate to set price incremental to 1.  

B. Diminishing Price Incremental 

As shown above, with constant price incremental, the 
iterative mechanism may not converge if the constant price 
incremental is not set appropriately. However, with 
diminishing price incremental, the iterative mechanism is 
guaranteed to converge. The question of interest now is how 
different schemes of diminishing price incremental affect the 
speed of convergence. We test two schemes of diminishing 
price incremental:     

 

√ 
 and      

 

 
, where c is a constant, 

and we refer to these two schemes as linear diminishing 
scheme and square root diminishing scheme, respectively. We 
also test how different choices of constant c will affect the 
speed of convergence. The following three figures show the 
speed of convergence of the iterative mechanism under the 
two schemes of diminishing price incremental when the 
constant c is equal to 10, 100, and 1000, respectively.  

 
Figure 2  Speed of Convergence when c=10 

 
Figure 3  Speed of Convergence when c=100 

 
Figure 4  Speed of Convergence when c=1000 

 

Note that in the legends of these three figures, sqrt(k) 
denotes √ . From these three figures we obtain the following 
insights.  

(1) For the two schemes     
 

√ 
 and      

 

 
, the square 

root one leads to significantly faster convergence when the 
iteration number required for the linear scheme is large. For 
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example, in Fig. 2, with the same constant c = 10, while the 
number of iterations for the liner scheme is over 1000 (in fact, 
it is over 300,000 iterations as we tested), the number of 
iterations for the square root scheme is only a little more than 
100, which means the square root scheme significantly speed 
up the convergence. In contrast, when the number of iterations 
for the linear scheme is less than 100, then the square root 
scheme does not speed up the convergence that much (as 
illustrated by Fig. 4) or may slower the speed of convergence 
(as illustrated by Fig. 3). Hence, if the expected number of 
iterations is large, it is preferable to choose the square root 
scheme; otherwise, the choice of the two schemes will not 
make much difference.  

(2) For the choice of the constant c, in both schemes, it is 
not the case that the larger c is, the better. When the number of 
iterations required is large, increasing c will speed up the 
convergence significantly. For example, for the linear scheme, 
changing c from 10 to 100 reduces the number of iterations 
significantly. However, when the number of iteration required 
is small, increasing c may not be beneficial. For example, for 
the square root scheme, increasing c from 100 to 1000 slows 
the convergence. Hence, when we find that convergence is 
very slow, we can try increasing c to speed up the 
convergence.  

(3) Compared with the iterative mechanism with constant 
price incremental, the one with diminishing price incremental 
does not only guarantee convergence, but also generally has a 
faster speed of convergence.  

VI.   Conclusions 

     In this paper we consider the scenario where agents have 
their unit congestion costs as private information. Truth-telling 
mechanisms are important to prevent the cooperation from 
being jeopardized by self-interested players. For this scenario, 
we propose an iterative mechanism, which is shown to 
simultaneously satisfy strategy-proofness, budget balance, 
individual rationality, and convergence. Moreover, this 
mechanism does not require the agents to report their direct 
private information, e.g, the unit congestion cost; only the 
indirect information, e.g., demand/supply, is needed to report. 
Finally, we conduct numerical studies to evaluate the 
performance of the iterative mechanism. We test two types of 
price incrementals: constant price incremental and diminishing 
price incremental. Compared with the constant price 
incremental, the diminishing price incremental does not only 
guarantee conver- gence, but also generally has a faster speed 
of convergence.  
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