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Abstract— In this paper, we evaluate the multi-scale PCA 

feature characteristics of point cloud and apply the feature in the 

underwater object recognition task. We analyses the raw point 

cloud from ModelNet database and compare the multi-scale 

feature among interested category. We also device the 

underwater experiment to evaluate the proposed algorithm. The 

result of experiment demonstrate the potential of multi-scale 

PCA feature in underwater object recognition task. 
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I.  Introduction  
Underwater sensing is an important issue in oceanic 

research field. The optical and acoustic instrument are the 

most popular sensors used for underwater sensing. The 3D 

passive optical sensors include underwater RGBD camera and 

stereo photographical camera. Due to the limited visibility in 

the water environment, the passive visual based sensor has 

only effective in the close range. Active range sensors, based 

on time-of-flight (ToF) principle, can detect object and 

measure the time delay between radiation and reflection. The 

point cloud can directly generated from the active scan [1-3].  

Although the point cloud can reflect the geometrical 

appearance of object, the quality of point cloud dataset will 

suffer from undesirable scattering signal, such as missing data, 

heterogeneous density, overlapping points and noise. For these 

reasons, a lot of point cloud operation approaches were 

proposed to salve the aforementioned problem [4].  

The high resolution 3D fusion model for underwater scene 

recognition and  reconstruction was studied in [5]. First the 3D 

acoustic scanner provided a large scan of the interested scene. 

Then the high resolution depth map was merged from a set of 

underwater photograph through using the Scale 

Invariant Feature Transform (SIFT).  
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Scale invariant is an important criteria in feature extraction. 

The multi-scale algorithm of point cloud was used in [6]. The 

multi-scale characterizes is defined as the radius of sphere 

centered on each local point cloud. When the radius of the 

sphere vary, the geometry feature of local cloud across scales 

can be measured. The high accuracy rate of classification was 

shown in author’s experiment results.  

The traditional feature extraction approaches required the 

hand-crafted features cooperating with a machine learning 

classifier. The performance of hand-crafted feature usually 

limited in specific task. Recently deep learning approach have 

been intensively used in feature extraction researches. For 

example, Convolutional Neural Network (CNN), a kind of 

deep learning network, has been successfully utilized for 

image recognition. Following the success of image application 

on CNNs, the concept of 3D Convolutional Neural Network 

(CNN) have be extend from CNNs. The basic architecture of 

3D CNNs include input layer, convolutional layer, pooling 

layer and fully connected layer. Training 3D CNN model does 

not require the feature knowledge of interested object. The 

benefit of 3D CNN include reducing the tedious labor for 

labeling or segmentation task [7, 8].  

Similar 3D CNN approach include voxel CNN. First, by 

using the definition of orientation and resolution, the LiDAR 

data are converted into the volumetric representation. The 

binary state of voxel is decided by the occupancy model [9]. In 

[10], 3D ShapeNet used the probability distribution model to 

describe the binary variables of voxel grid. The public 

ModelNet dataset was used to train the Convolutional Deep 

Belief Network (CDBM) in training stage. The experiment 

result demonstrated the 3D geometric shape can be recognized.  

While using volumetric representation, the data sparsity 

may constrained the resolution of the point cloud [9, 11]. In 

addition, due to lacking the appropriate and enough training 

dataset, the deep learning approach seldom be applied in 

underwater object recognition.  

BlueView BV5000, a kind of 3D acoustical sonar, is an 

effective tool for underwater exploration. The 3D point cloud 

can directly generated from this sensor. The comparison of 

quantitative measurement between BV5000 and Terrestrial 

Laser Scanner (TLS) was evaluated in [12]. Through the tilt 

angle calibration and error correction, the detailed defect on 

underwater infrastructure can be found. For this kind of 3D 

sonar scanner, the more quantitative and qualitative 

assessment of underwater measurement can be expected.  

In this paper, we evaluate the multi-scale feature 

characteristics of point cloud and apply the feature in 

underwater object recognition task. First we analyses the raw 

point cloud from ModelNet database. Then we compare the 
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multi-scale feature among different categories. We also device 

the underwater experiment to evaluate the proposed algorithm. 

The methodology of proposed approach are explained in 

Section II. The feature extraction procedure and experimental 

are described in Section III. In Section IV, we conclude and 

proposal the pointers to future work. 

II. Method 
Local dimensionality can describe whether the 3D point 

cloud looks like a line (1D), a plane surface (2D), or a voxel 

whose volume around the specific location (3D). The PCA 

feature extraction is a kind of pointwise approach. The points 

are from a sphere with a specific scale radius. Any point with 

nearby neighboring points represent a feature subset. Let the 

scale as the radius of a sphere centered on an interested point. 

The 3D point cloud dataset is defined as 
{              }     . Through rearranging the Cartesian 

coordinates of dataset, the PCA feature of dataset can be 

extracted by using Principal Component Analysis (PCA) [6].  

Let    be the eigenvalues output by PCA analysis and sorted 

the magnitude    in descend order as         . Each 

eigenvalue    represents the explainable variance 

corresponding to each reference axial. For 2D point cloud 

dataset, the first two eigenvalues are enough to represent the 

variance of the dataset. Moreover, the 3D dataset exist three 

eigenvalues to contribute the total variance. Therefore the 

proportions of eigenvalues    
  

        
 can be defined as the 

local dimensionality at a given scale. The PCA feature space is 

dominated by the first two proportions of eigenvalues and 

shown in Fig. 1.  

 

Figure 1. The PCA feature space  

Sometimes, the user may not know the appropriate scale in 

the practical tasks. On the other hand, the point cloud dataset 

may be missing scales, especially in low point density. To 

overcome the problem mentioned above, the multiscale 

criterion, an adaptive radius variance process, had been 

performed in [6,13]. The main idea is to combine different 

PCA scale features and find the best separable feature for 

recognition task.  

About the multi-scale criterion, we consider a target point 

with multiple spherical radius   {        },    being the 

number of scale. Three PCA features are computed for each 

scale. For single scale criterion, the PCA feature vecter 

  [        ]  with dimension 3; For multi-scale criteria, 

    [  
       

 ] with dimension      . The latter case of 

   corresponds the PCA feature values with the radius   . 

III. Experiment 
The existing multi-scale feature approaches has been 

successfully applied in recognition of outdoor environment. 
For the terrestrial recognition task, the multi-scale PCA 
feature can exactly represent the object category (e.g. ground, 
building, vegetation, rock, etc.) [6, 13]. Following the 
application on the ground, we want to evaluate the multi-scale 
criterion in the underwater object recognition task. 

A. ModelNet Database 
ModelNet is a public dataset especially for researchers in 

computer vision, computer graphics, robotics and cognitive 

science. The database collect 48,000 3D CAD models. We 

select two kinds of interested categories (human and car) from 

ModelNet database. The reason for choosing human category 

is we want to evaluate the potential about using underwater 3D 

sonar to detect the drowning human. As for the second 

category, the car CAD model can provide enough 2D facets 

for comparison.   

In the practical scanning process, the 3D point cloud 

generated from LiDAR is different with 3D CAD model. All 

the LiDAR sensor exist the shielding effect. Due to only half 

of appearance of object can reflect radiation, the 2.5D point 

cloud dataset is the normal consequence for the specific object 

in a single scan. Furthermore, the position orientation of 

interested object is usually unknown. We segment the original 

3D CAD model into 3 parts: Original CAD model (3D), left 

side profile (2.5D) and up side profile (2.5D), respectively.   

Fig. 2 illustrate the first human CAD model. The human 

CAD model is composed with basic body component. Two 

scales (r=0.2m and r=0.35m) are used to compare the 

difference in feature space. The multi-scale PCA feature space 

between two 2.5D dataset are shown in Fig. 3. Observing Fig. 

3(b) scale r=0.35m, the feature space of left side profile model 

were dominated by two proportions of eigenvalue      . The 

PCA feature can reflect exactly the slim shape of object. 

Fig. 4 illustrate the second human CAD model wearing 

uniform and carrying a gun. The multi-scale PCA feature 

space between two 2.5D dataset are shown in Fig. 5. Again, 

the multi-scale PCA feature can reflect the slim shape of 

object. 

Fig. 6 illustrate the car CAD model. The multi-scale PCA 

feature space between two 2.5D dataset are shown in Fig. 7. 

For the symmetry geometrical object, the feature space is 

similar in two scales. 

Fig. 8 demonstrate the comparison between the human 

model and car model. The human model has more the third 

proportion of eigenvalues    in feature space.  The multi-scale 

feature can discriminate the human model and car model.  



 

116 

 

International Journal of Advances in Computer Science & Its Applications – IJCSIA 
Copyright © Institute of Research Engineers and Doctors 

Volume 9 : Issue 2-  [ISSN : 2250-3765] - Publication Date: 27 Dec, 2019 

 
 

 

Figure 2. The first human CAD model 

 
Figure 3. The multi-scale feature space 

 
Figure 4. The second human CAD model 

 
Figure. 5 The multi-scale feature space 

 

 
Figure 6. The car CAD model 

 
Figure 7. The multi-scale feature space 

 

 
Figure 8. The multi-scale feature space 

B. Underwater Experiment 
The underwater scan has been applied to evaluate the 

proposed methodology. BV5000 is a kind of multi-beam 3D 

sonar with a vertical swath direction and a mechanical 

horizontal rotation system. The specifications of the device are 

given as follow: 

 Spherical Scan Area: 360 º  

 Operation Frequency: 1.35 MHz  

 Maximum Scan Range: 30 m  

 Number of Beams: 256  

 Beam Width (º) 1 x 1  

 Vertical Spatial Resolution: 16 mm at 10 m 
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 Horizontal Spatial Resolution: 30 mm at 10 m 

 Weight: 22 kg 

The experimental scene and data acquisition have been 

carried out in one of fishery harbor in Kaohsiung, Taiwan. The 

underwater environment locate along the dock structure which 

supported by a serial of piers. The piers is roughly 5m deep. 

The wasted tires, originally used for anti-collision cushion, are 

the main underwater object on the bottom of harbor. 

The dummy person was drop into the prefixed positon in 

harbor where the seabed condition was known. Then BV5000 

sonar was placed near close the dummy people for obtaining a 

necessary dense of cloud point. In this experiment, the 

location of dump person (i.e. ground truth) is known (Fig. 9). 

Besides, a lot of wasted tires distributed among on the nearby 

seabed surface.  

For detection efficiency, we only focus on the underwater 

object. Therefore the seabed surface can be filtered through 

RANSAC surface fitting estimation. After deleting the points 

of seabed surface, the outlier point cloud of RANSAC just 

belong to the interested underwater object (Fig. 10).  

The categories of object include one dummy person (3D 

dataset), two wasted tires (3D dataset) and seabed surface (2D 

dataset). Fig. 11 present the PCA feature space of 3 kinds of 

underwater object under 2 scales.  

For 2D object, i.e. seabed, the PCA features were 

dominated by two proportions of eigenvalue      . For 3D 

object, e.g. dummy person and wasted tire exist the third 

proportion of eigenvalues   . From the viewpoint of scale 

analysis, we can find the PCA feature space of dummy person 

and wasted tire mixed together in scale r=2m (Fig. 11a). The 

different kind of 3D object cannot discriminate from feature 

space. However, in scale r=3.5m, the PCA feature space can 

discriminate the difference of 3D object (Fig. 11b). 

Comparison with two feature spaces, the PCA multi-scale 

criterion provides more separable feature spaces.  

IV. Conclusion 
The PCA multi-scale feature for underwater object 

recognition was studied in this paper. We evaluated the multi-

scale feature from public ModelNet dataset and an underwater 

experiment. The PCA multi-scale feature can be extracted 

from point cloud and reflect the shape characteristic. Next, the 

multi-scale feature criterion for underwater object recognition 

can be a baseline reference and compared with another 

different recognition approach. 
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Fig. 9. The point cloud of dummy person in underwater scan 

 
Fig. 10. Using RANSAC algorithm to delete sea floor. 

 

 
Fig. 11. The multi-scale PCA feature space. (a) scale=0.2m; (b) scale=0.35m 
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