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Abstract—For millennia, questions concerning human 

understanding capacity have been relegated to philosophy, but 

became an issue of technical urgency recently, due to rapid 

advancements in machine intelligence. This paper summarizes a 

theory of neuronal mechanisms underlying understanding 

followed by outlining a framework for simulating such 

mechanisms in computational artifacts. 
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I. Introduction 

This introductory section defines terms and summarizes the 

key ideas in the theory of understanding [1], [2]. The theory 

associates intelligence with adaptive regulatory mechanisms 

serving to organize interaction between organism and 

environment in a manner conducive to  survival. 

Understanding is an advanced form of such regulatory 

mechanisms that is unique to the humans. Adaptive regulation 

is centered on the learning capacity which is ubiquitous to all 

species and boils down to optimizing organism-environment 

interaction based on the prior interaction history. The 

mechanism works (optimizes responses) when the current 

conditions are similar to some of those encountered in  the 

past, and fails when conditions are novel and unfamiliar. 

Understanding complements learning, by allowing 

construction of near-optimal responses in novel situations 

having no precedents in the past history.  The  capability is  

due to mental modeling which, in a sense, compensates for the 

lack of past experiences without the need for recreating them. 

During learning, experiences (interactions with objects in the 

environment) are registered in neuronal structures which get 

re-activated when encountering similar objects and conditions. 

Understanding involves self-directed (decoupled from sensory 

inputs) activation and manipulation of neuronal structures. 

Stated differently, mental modeling allows manipulation of 

mental objects decoupled from the physical objects they 

represent. A more precise definition follows. 

 

Physical objects. Physical objects have three definitive 

attributes: they are a) distinct, i.e. occupy volumes in space 
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delineated by distinct boundaries, b) preserve their self- 

identity, i.e. change their properties and admit a certain 

amount of changes without losing their self-identity and c)  

can interact with other objects, i.e., form relations with other 

objects imposing some form of coordination on the object‘s 

behavior (changes over time). 

 
b) Mental objects. Mental objects are of two types: neuronal 

structures and virtual objects. Neuronal structures reside in the 

neuronal space and are counterparts (representations) of 

physical objects residing in the physical space. Neuronal 

structures give rise to virtual objects which are organized 

sensory groupings, or images (visual, acoustic, tactile, etc.) 

Virtual objects reside in the mental space. 

 
c) Mental modeling. Mental modeling involves operations on 

neuronal  structures  underlying  the  experience  of  ―thinking,‖ 

that is, manipulating virtual objects in the mental space. 

 
The theory of understanding is centered on the notion of 

―neuronal     packets‖     which     are     Hebbian     assemblies 

surrounded by boundary energy barriers. Neuronal  packets  

are counterparts of physical objects: boundary energy barriers 

make them distinct and thus capable of representing distinct 

objects, their behavior and relations. The next section defines 

these notions in greater detail. 

 

I. Neuronal packets and mental 

modeling. 

Energy barriers make neuronal packets quasi stable, i.e., 

capable of withstanding entropic erosion and changes in 

conditions both inside and outside packet boundaries. 

Crucially, they also make packets discernible, i.e., separate 

and distinct from each other, and amenable to being combined 

into functional groupings (mental models) that can have 

properties different from those of the constituent packets. 

Stability, perseverance and discernibility of neuronal packets 

underlie the experience of the external world being populated 

with bounded entities that resist disintegration and maintaining 

their self-identity under changing conditions. 
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Packets respond to variations in the stimulation flow, by 

varying patterns of excitation-inhibition in their constituent 

neurons. Varying patterns in packet a underlie the experience 

of behavior variation in the corresponding physical object A 

(i.e., changes in A admissible under its self- identity). If 

population vectors are associated with packets (Packet 

Response Vectors, or PRVs) behavior of objects can be 

represented as PRV movements, as shown in Figure 1. 
 

Figure 1. 1) Neuronal representations of external objects are constituted by 

neuronal packets. 2) Changes in the external objects (i.e., behavior) cause 

variations of excitation-inhibition patterns in the corresponding packets. 3) 

Behavior can be expressed as trajectories of Packet Response Vectors (PRVs). 

 

Figure 1 conveys one of the key hypotheses in the theory of 

understanding: behavior of physical objects is represented as 

rotation of packet vector in a packet or group of packets 

underlying perception of those objects. Figure 1.1 depicts 

neuronal packet as a complex, or manifold comprising 

multiple neurons while Figure 1. 3 depicts the same packet as 

a holistic unit. Forms of object perception in Figure 1.1 and 

Figure 1.3 are mutually exclusive, not unlike in handling a 

book: one can either open a book and examine its contents or 

close the book and temporarily loose access to the contents. 

Another example: one can experience apple as a rich sensory 

grouping (color, taste, etc.) or as a unit defined by the way it is 

grouped with and behaves respective other units, as in 

―putting   apple   on   the   table‖.   Reversible   unit-manifold 

transitions (dubbed ‗packet enfolding/packet unfolding‘) is the 

single most fundamental operation underlying understanding. 

Figure 2 depicts construction of mental models. 

 
Detection of inter-packet coordination requires neurons 

sensitive to particular forms of dependency in the movement 

of packet vectors (i.e., correspondences in the behavior 

(excitation-inhibition patterns) in different packets). 

Accordingly, the theory postulates existence of regulatory 

neurons that respond to or can be formed into groups 

responding to different types of pattern correspondence. 

Eliciting responses from such neurons underlies  the 

experience of forming models capturing relations between 

objects. Self-initiated activation of coordination neurons 

produces coordinated activation/inhibition patterns in the 

packets experienced as ‗imagining‘ the relations. 

 

II. Gnostron: a framework for 

machine understanding. 

In the gnostron framework, cognitive process is defined as 

probabilistic optimization of neuronal resources [3 ], [4 ], [5], 

[6], [7], [8] undergoing two stages: formation of neuronal 

packets (learning), followed by  constructing  and 

manipulating packet compositions (modeling). 

 

During learning, neurons are drawn from pool X = x1, x2, …, 

xN  and allocated to streams  of  stimuli  drawn  from a finite 

set Z = z1, z2, …., zM. Pool X has finite longevity allowing a 

succession of L stimulation episodes Z1, Z2,…,ZL comprising 

varying stimuli combinations of Zq = {zp, zl,…, zw). 

Combinations in different episodes can overlap, 

Z q Zv   , q ≠ Neurons in X are defined by their 

response vectors, as shown in Figure 3. 

 

 

 

 
 

Figure 2. 1) Juxtaposing packets and detecting some form of inter-packet 

coordination establishes relations (particular forms of behavior dependency) 

between the corresponding external objects. 2) Encountering objects A and B 

can be separated by large time periods and multiple other encounters. 

Composition brings together packets a and b in a composite structure capturing 

relation between A and B and thus combining them into a relational unit C that 

is amenable to inclusion into other compositions. In this way, iterative cycles  

of composition produce nested models capturing dependencies between 

expanding varieties of objects and object groupings. 

 

 

 

 

 

 
Figure 3 .  Response range of neuron xi  includes stimuli zj, zk,…, zh. Firing xi  

in the presence of zi  is rewarded with Ei   amount of  energy   with probability 

ij,  and  incurs  energy cost  in  the  amount i.   Response  vector  of  xi   is 
defined  in  M-dimensional  stimuli  space  and  comprises  probability values 

x
   
 (  ,   ,...,   ) . 

i ik ij ir 
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Neurons respond to different stimuli (by probabilistic firing) 

and, reciprocally, stimuli respond to different neurons (by 

probabilistic rewards), as shown Figure 4. 

 

 

here ij = 1 if neuron xi is allocated (tuned and fired) to zj, and 

ij = 0 if otherwise; ij = 1 - ij;  m is the number of stimuli  

and n is the number of neurons participating in the episode. 

 

Energy intake declines as a result of misfiring, i.e., 

expenditures are not compensated. The first term in the 

equation defines cumulative rewards yielded by the allocation 

while the second term defines cumulative expenditures (e.g., 

cost of firing). Evolution towards increased thermodynamic 

efficiency requires minimization of internal expenditures and 

maximization of energy inflows during the pool‘s lifetime, as 

indicated in Equation 2. 

Figure  4   Stimulus  zj   responds  to  collective  firing  of  neuronal    group, 

by emitting energy reward Ej. 
Fl ( ij )  max 

L 

(2) 

Figure 5 illustrates generic problem facing gnostron Survival requirements (Equations 1 and 2) are satisfied by 

forming neuronal groups in the pool X
S
 = {xj, xh,…,xt} such 

that, whenever any neuron in the group happens to respond, all 

the other group members become candidates for allocation. 

More precisely, response vectors are associated with the 

groups allowing treating them as units allocated to stimuli in 

exactly the same fashion as the individual neurons 
 
s s s s 

X  ( j , h ,...., t ) , 

Figure 5. Blob Z caused firing of neuron xi: What other neurons need to be 

fired in order to extract energy reward from Z? Successful firing obtains 
reward and identifies the blob as stimulus zj. 

S 
 1  S

 

hnS 

S S 

, nh 
 n 

 
(3) 

Neuron-stimuli allocations are carried out within windows of 

fixed duration and capacity, as shown in Figure 6. 

 

Figure 6. Neurons are allocated to stimuli to maximize the cumulative reward. 

Allocations of initially uncommitted neurons (unshaded circles) are based on 

the configuration of responses caused by the yet unidentified stimuli (blobs). 

Reward maximization is concomitant with maximizing uncertainty reduction 

(reliable identification of the stimuli). 

 

Pool‘s survival (for the duration of its longevity limit) requires 

allocation of neuronal resources in every episode yielding net 

energy supplies (the sum of intakes minus internal 

expenditures) equal or exceeding some threshold value Et, as 

expressed in Equation 1 below. 

 

 

here n
S
 is the number of neurons in X 

S
. 

 

Reversible transition between groups (treated as units) and 

their constituents is illustrated in Figure 7. 
 

 
 

Figure 7. For allocation purposes, neuronal group can be treated, alternatively, 
as a unit (packet) or as a composition of lower-level units (neurons). 

 
The allocation process alternates between allocating groups 

and allocating their constituents, as shown in Figure 8. 
 

 
Figure 8. 1) Neuronal groups are allocated as units (group XS  is 
allocated to zj).    2) Subsequent allocation of individual neurons in XS  

is constrained by the preceding group allocation (neurons in XS 
responsive to zj are all tuned to zj). 


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As configurations of the stimuli vary, group allocations 

change accordingly, as shown in Figure 9. 

 

Figure 9. Group XS is allocated differently as the stimuli configuration 

changes from 1 to 2. Involvement of different neurons in XS corresponds to 

rotation of group vector  . 

 
Finally, establishing inter-packet coordination (constructing 

mental models) imposing order in selecting groups and 

constrains selection of resources (neurons) within the groups, 

as shown in Figure 10. 
 

Figure 10. Establishing relation R between groups XS and Xq causes resource 
allocation process to alternate between the groups while constraining selection 
of neurons within the groups. 

Operating gnostron involves defining coordination patterns 

(―A pushes B‖, ―A rests on top of B,‖ etc.) and defining 

constraints for applying them within the domain of interest. 

 

It has been shown that grouping by packets (i.e., via forming 

associative networks partitioned into internally cohesive and 

externally weakly coupled neuronal groups) is near-optimal, 

i.e., maximizes rewards while minimizing the number of 

unproductive allocations. Packet mechanism was shown to 

yield near-optimal results and orders of magnitude reduction 

in the amount of computation in large-scale resource 

optimization tasks (e.g., target recognition) [9], [10]. 
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