
International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 1- [ISSN : 2250-3765] - Publication Date: 10 May, 2019

30


(r, (s 

2
r) / L,

0)  s [L, L 1]


A Mapping and Sorting Hybrid Technique

for Color Image Palette Extraction
Gonzalo Urcid

1
 and Rocío Morales-Salgado

2

Abstract—This paper introduces a hybrid computational

technique that combines a vector to scalar mapping and single

key numerical sorting to extract the color palette of an image

coded in RGB (Red-Green-Blue) space. Thus a data set of color

pixels in three dimensional integer space is mapped to an

appropriate scalar data set that can be used to perform a fast

numerical sort. The resulting ordered data set can be readily

scanned to count all distinct colors and then remapped to its

original dimensionality to obtain the image color palette.

Explicit direct and inverse mappings are provided including

several examples to illustrate the proposed mapping-sorting

technique.

Keywords— color count, color image, color palette, data

sorting, multi-dimensional mappings

I. Introduction
Counting all distinct elements in a given data set as well

as obtaining the corresponding data subset of non-repeated
elements is a common procedure useful in diverse areas such
as, e.g., algorithmic analysis, data science or signal and
image processing. In the aforementioned areas, several
computational techniques are available for studying multiset
mathematical manipulation [1,2], clustering trends in time
series [3,4], or color image quantization and transfer [5,6].

In this paper, we focus our attention to the basic problem
of extracting the color palette of a given image coded in
RGB (Red-Green-Blue) space and consequently obtaining a
fast count of all distinct colors without necessarily assuming
that the given image has been previously quantized. For that
purpose, we introduce a hybrid computational technique

II. Mathematical Background

A. Vector to Scalar Mappings
Let X denote an RGB color coded image whose data

structure is a 3-packed matrix of numbers belonging to the
integer set defined, per color channel, by the dynamic range
specified by [0, L−1] where L denotes the maximum number
of gray levels. Then a color pixel is a triplet or vector c =
(r,g,b) where r,g,b belong to [0, L−1]. The direct vector to
scalar mapping or equivalently, the scalar coding function is
given by

s(c)  s(r, g,b)  r  Lg  (L2 1)b . (1)

The numerical coefficients assigned to each channel
value are chosen to produce a gap between “redness”,
“greeness”, and “blueness”, avoiding possible overlaps of
mapped values when permuting r, g, and b. If r = b = g, a
color is the same as a gray tone. For example, color black
corresponds to r = g = b = 0 and color white corresponds to r
= g = b = L−1. The r, g and b coefficients in (1) are
established as functions of L in order to make the number
pairs {1, L}, {1, L

2
+1}, and {L, L

2
+1}, relatively prime.

Thus, these relationships allow us to establish the inverse
scalar to vector mapping or equivalently, the vector
decoding function. The inverse mapping is then constructed
as the following piecewise function for a given coded scalar
s,

(0, 0, 0)  s  0 
(s, 0, 0)  s [1, L 1]

based on a vector to scalar mapping followed by single key
numerical sorting.

Our work is organized as follows: Section II, gives the
mathematical background material used in Section III, in
which the mapping-sorting technique is described as applied

c(s) 





(, (  ) / L, s / (L
2
1))  s  L

2
1

(2)

to some color images. Finally, in Section IV we give the
conclusions and a few pertinent comments to the research
presented here.

1 Gonzalo Urcid

Optics Department (INAOE)

Tonantzintla 72840, Mexico

2 Rocío Morales-Salgado
Information Technology and Data Science Department, UPAEP

Puebla 72410, Mexico

In the third conditioned equality of (2), r = mod(s, L).
Similarly, in the fourth conditioned equality, μ = mod(s,
L

2
+1) and ρ = mod(μ, L). Also notice the use of the integer

floor function for the “blue” coordinate in the last condition
of (2). As will be shown in Section III, the computer tests
are realized on 24-bit color images where each color channel
is an 8-bit grayscale image. Hence, L = 2

8
 = 256 and the

previous two equations are worked out numerically using,
L−1 = 255, L

2
−1 = 65535, and L

2
+1 = 65537. We remark

that since we are mapping three-dimensional vectors to a set
of scalars, there are 6 possible scalar coding functions given
by (1) by considering a different permutation of the
coefficients {1, L, L

2
+1}. If another permutation of {1, L,

L
2
+1} is selected, the vector decoding function in (2) should

be changed accordingly. The use of (1) assumes that the
packed matrix X is converted to a list of triplets using row-
column or column-row scanning.

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 1- [ISSN : 2250-3765] - Publication Date: 10 May, 2019

31

 

B. Sorting and Counting
As explained in the last paragraph of Section II, the

packed matrix X representing a color image is first converted
to a list of 3D vectors in order to be mapped, using (1), to a
single scalar set whose elements will appear in random
fashion and many of them possibly repeated across the
whole set. Briefly stated, the result obtained with the scalar
coding function is a multiset of integral values in the range
[0, L

3
+L−2]. Therefore, these integer values are interpreted

as a list of single keys in a random access file that can be
sorted quickly using appropriate fast algorithms.

From the many available single key internal sorting
algorithms, two of the fastest are the quicksort [7] and
heapsort [8] algorithms. Our selection of the heapsort
algorithm is based on the fact that for a large number of

III. Color Palette Extraction
From the explanation given previously in relation to

function Distinct(v) displayed in (3) it is immediate that the
first column of the two-dimensional output matrix A
corresponds to the ordered list of scalar coded color pixels
and serves as input to a second function displayed in (4),
named BuildPal(v), that builds as image, although possibly
smaller in size than the given color image, the palette of
distinct colors.

function BuildPal(v)

m  rows(v); n   m 

for i  0 n 1
elements, as in the case of color pixels in a given image, its
computational complexity in the worst case (for an almost
unordered list) is similar to the average case, which is not
the same situation for the quicksort algorithm. The technical
aspects just mentioned between quicksort and heapsort are
fully explained in detail in [9]. Specifically, we use the
sorting built-in functions provided by the Mathcad [10]
software whose implementation follows the corresponding
algorithm given in [11,12]. Recall that both quicksort and
heapsort are not stable sorting algorithms, meaning that after
a key list has been ordered, equal or repeated keys are
brought together but do not retain necessarily their original
relative order. However, since we are dealing with integer

for j  0 n 1

k  i  n  j

u  if (k  m 1, c(vk), c(vm1))

u  u
T

Ri j  u0 ;Gi j  u1 ; Bi j  u2

P  augment(R, G, B)

return P

(4)

numbers, stability is not an issue for the purpose of counting
distinct colors [13] and extracting an image color palette.

The simple computational procedure Distinct(v) with
linear complexity, shown in (3), stores the first ocurrence of
a given key or scalar coded pixel p in Ak 0 (1

st
 column) as

well as the number of times c equal keys are found together
in Ak 1 (2

nd
 column). Then, the number of rows in the output

array A is the number of distinct elements in the sorted input
vector v obtained using (1).

function Distinct(v)

v  stack(v, 1); m  rows(v)

Again in (4), besides the programming reserved words
function, for, if (as function), and return, the Mathcad
built-in array functions rows and augment are used to
simplify the corresponding pseudo-code. Note that, after
calling this function, array P is a square packed matrix
whose matrix components R, G, and B contain, respectively,
the red, green, and blue channels of the extracted color
palette.

A. Palette Ordering
In digital photo, image, and graphic design software,

color reduction functions are available to quantize a color
image, for example, to 256 colors in order to make easy the

k  0; p  v0

for i 1

; c  1

(3)

display of the corresponding quantized color palette.
Possible arrangements for quantized distinct colors are by
index, luminance or hue ordering. For a given color image

Ak 0
 p ; Ak1  c ; c  c 1

X, if p denotes the number of rows and q represents the
number of columns, then the number of pixels in X is pq.

if p  vi

p  vi ; k  k 1; c  1

return A

In (3), besides the programming reserved words

function, for, if, and return, the Mathcad built-in array
functions stack and rows are used to simplify the above
pseudo-code. Note that, after calling this function, the first
column of A (2

nd
 subindex is 0) contains the coded color

palette and variable k gives the color count (final value of 1
st

subindex).

In this work, since the complete color palette is extracted
without any quantization level, the way in which the palette
is ordered is by index color, as found by scanning the color
image from the top left corner pixel, (0,0),to the bottom right
corner pixel (p−1,q−1) and follows the specific permutation
selected for the scalar coding function given in (1) of the
coefficients affecting the r, g, and b channels. Also,
following procedure (4), the extracted color palette is
reshaped as a square image that generally is smaller in size if
compared to the input color image size. The use of the ceil
function applied to the square root of m (distinct colors) is
the lateral dimension of the desired palette.

m 1

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 1- [ISSN : 2250-3765] - Publication Date: 10 May, 2019

32

B. Computer Experiments and Results

The mapping-sorting technique explained previously was

applied to 50 public domain RGB color images of size 256 ×

256 pixels. Functions (1) and (2) as well as procedures (3)

and (4) were implemented in Mathcad’s programming

language and verified with Matlab. Figure 1 shows a subset

of natural color images together with their extracted unique

colors reshaped as a square image and Fig.2 depicts the

corresponding 3D histograms in RGB space. In Fig. 1, the

image color palette is enclosed with single pixel black

border lines to emphasize its smaller size when compared to

the input image size and, in Fig. 2, notice that smaller

spherical neighborhoods, although barely noticeable,

represent the unique colors.

Similarly, Fig. 3 shows a subset of synthetic color images

with the corresponding unique colors organized as a square

image and Fig. 4 depicts the associated 3D histograms in

color space. In this last figure, since the number of distinct

colors in a synthetic image is much less than the number of

pixels contained in the original image, the size of dominant

color neighborhoods are significantly reduced. The 3D

histogram representation in RGB color space shown in Figs.

2 and 4 was realized using the ColorSpace software [14].

Figure 2. 3D histograms of natural color images (left) and

3D histograms of extracted color palettes (right) Figure 1. A set of natural color images (left) and the

corresponding extracted color palettes (right)

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 1- [ISSN : 2250-3765] - Publication Date: 10 May, 2019

33

The mean time spent in all steps involved to count and

extract the color palette was less than 750 milliseconds for

each test image using a standard PC computer. Figure 5

gives a block diagram with the steps required to implement

the mapping-sorting technique. The overall computational

complexity is of order m log m, where m = pq is the number

of picture elements of an input color image X.

IV. Conclusions
In this paper we have discussed a novel approach to find

the proper subset of a multiset of vectors consisting of its
distinct elements, using as visual examples, RGB color
images as sets of color pixels in three-dimensional space.

The proposed technique maps a set of vectors to a set of
scalars, uses the heapsort algorithm to order them, and
remaps the unique distinct scalars to extract the color palette
from a given image.

Illustrative examples using public domain images were
given showing their corresponding palettes and the exact
color count, including the overall time spent in applying the
mapping-sorting hybrid technique. Future work considers
aspects, such as, the generalization of the direct and inverse
mappings to higher dimensions and the realization of further
tests for applications of mapping-sorting to data clustering in
pattern recognition or segmentation of multispectral
imagery.

Figure 4. 3D histograms of synthetic color images (left) and

3D histograms of associated color palettes (right)

Figure 3. A set of synthetic color images (left) and the

corresponding extracted color palettes (right)

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Copyright © Institute of Research Engineers and Doctors

Volume 9 : Issue 1- [ISSN : 2250-3765] - Publication Date: 10 May, 2019

34

Gonzalo Urcid received his B.Eng. (1982) and
M.Sc. (1985) both from the University of the

Americas in Puebla (UDLAP), Mexico, and his

Ph.D. (1999) in Optical Sciences from the
National Institute of Astrophysics, Optics, and

Electronics (INAOE) in Tonantzintla, Mexico.

Since 2001 is a National Researcher from the

Mexican National Council of Science and
Technology (SNI-CONACYT), and currently

is an Associate Professor in the Optics

Department at INAOE. His research interests

include digital processing of multichannel
images, artificial lattice neural networks, and

pattern recognition.

Rocío Morales Salgado received her B.Eng.

(1994) and M.Ed. (1998), respectively, from

the Autonomous University of Puebla (BUAP)
and the Iberoamerican University (UIA). She

obtained her Ph.D.(2006) in Information

Technologies and Decision Analysis by Puebla

State Popular University (UPAEP). Her
research interests are software engineering,

data science, and e-business. She is currently

Chair and Professor of the graduate programs

in Information Technology and Electronic
Business as well as the Master's Degree in Data

Science and Business Intelligence at UPAEP.

Acknowledgment

Gonzalo Urcid thanks the National Council of Science
and Technology (SNI-CONACYT) in Mexico City for
partial financial support through grant No. 22036.

References

[1] D. Knuth, “Evaluation of powers,” in The Art of Computer

Programming, Vol. 2 (Seminumerical Algorithms 3rd Ed.), Reading,
MA: Addison Wesley, 1998, pp. 461−485.

[2] D. Knuth, “Permutations of a multiset,” in The Art of Computer
Programming, Vol. 3 (Sorting and Searching 2nd Ed.), Boston, MA:
Addison Wesley, 1998, pp. 22−35.

[3] D. Lemire, M. Brooks, and Y. Yan, “An optimal linear time

algorithm for quasi-monotonic segmentation,” Proceedings of the 5th
IEEE International Conf. on Data Mining, Houston, TX, November

[4] K. Aouiche and D. Lemire, “A comparison of five probabilistic view-
size estimation techniques in OLAP,” Proceedings of the ACM 10th
International Workshop on Data Warehousing and OLAP, Lisbon,
Portugal, pp. 17−24, November 2007.

[5] G. Urcid, L.D. Lara-R., and E. López-M., “A dendritic lattice neural
network for color image segmentation,” Proceedings of SPIE,
Applications of Digital Image Processing XXXVIII, San Diego, CA,
Vol. 9599, pp. 95992O:1−10, August 2015.

[6] G. Urcid, R. Morales-S., and G.X. Ritter, “Multivariate data mapping
based on dendritic lattice associative memories,” Proceedings of the
4th IEEE Latin American Conf. on Computational Intelligence,
Arequipa, Peru, pp. 1−6, November 2017.

[7] D. Knuth, “Quicksort,” in The Art of Computer Programing, Vol. 3
(Sorting and Searching 2nd Ed.), Boston, MA: Addison Wesley, 1998,
pp. 113–138.

[8] D. Knuth, “Heapsort,” in The Art of Computer Programing, Vol. 3
(Sorting and Searching 2nd Ed.), Boston, MA: Addison Wesley, 1998,
pp. 144–158.

[9] D. Knuth, “Sorting: Summary, history, and bibliography,” in The Art
of Computer Programing, Vol. 3 (Sorting and Searching 2nd Ed.),
Boston, MA: Addison Wesley, 1998, pp. 380–391.

[10] Mathcad 15.0 (M045), “Sorting functions,” in Mathcad Help, PCT-
Parametric Technology Corporation, 2015.

[11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
“Quicksort and Heapsort,” in Numerical Recipes, The Art of
Scientific Computing, 3rd Ed., New York, NY: Cambridge University
Press, 2007, pp. 423–428.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Sorting and
Order Statistics,” Part II in Introduction to Algorithms, 3rd Ed.,
Boston, MA: The MIT Press, 2009, pp. 147−228.

[13] D. Lemire, “Counting exactly the number of distinct elements: sorted
arrays vs hash sets?,” at https://lemire.me/blog/2017/05/23/counting-
exactly-the-number-of-distinct-elements-sorted-arrays-vs-hash-sets/,
WordPress, 2017.

[14] P. Colantoni, “3D color space visualization,” in ColorSpace User
Manual Ver. 1.0, 2004, pp. 6−9.

About Author (s):

2005.

Figure 3. Flow diagram of the steps involved in the mapping-

sorting technique for color count and palette extraction

