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Abstract—This paper introduces a hybrid computational 

technique that combines a vector to scalar mapping and single 

key numerical sorting to extract the color palette of an image 

coded in RGB (Red-Green-Blue) space. Thus a data set of color 

pixels in three dimensional integer space is mapped to an 

appropriate scalar data set that can be used to perform a fast 

numerical sort. The resulting ordered data set can be readily 

scanned to count all distinct colors and then remapped to its 

original dimensionality to obtain the image color palette. 

Explicit direct and inverse mappings are provided including 

several examples to illustrate the proposed mapping-sorting 

technique. 

 

Keywords— color count, color image, color palette, data 
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I. Introduction 
Counting all distinct elements in a given data set as well 

as obtaining the corresponding data subset of non-repeated 
elements is a common procedure useful in diverse areas such 
as, e.g., algorithmic analysis, data science or signal and 
image processing. In the aforementioned areas, several 
computational techniques are available for studying multiset 
mathematical manipulation [1,2], clustering trends in time 
series [3,4], or color image quantization and transfer [5,6]. 

In this paper, we focus our attention to the basic problem 
of extracting the color palette of a given image coded in 
RGB (Red-Green-Blue) space and consequently obtaining a 
fast count of all distinct colors without necessarily assuming 
that the given image has been previously quantized. For that 
purpose, we introduce a hybrid computational technique 

II. Mathematical Background 

A. Vector to Scalar Mappings 
Let X denote an RGB color coded image whose data 

structure is a 3-packed matrix of numbers belonging to the 
integer set defined, per color channel, by the dynamic range 
specified by [0, L−1] where L denotes the maximum number 
of gray levels. Then a color pixel is a triplet or vector c = 
(r,g,b) where r,g,b belong to [0, L−1]. The direct vector to 
scalar mapping or equivalently, the scalar coding function is 
given by 

s(c)  s(r, g,b)  r  Lg  (L2  1)b . (1) 

The numerical coefficients assigned to each channel 
value are chosen to produce a gap between “redness”, 
“greeness”, and “blueness”, avoiding possible overlaps of 
mapped values when permuting r, g, and b. If r = b = g, a 
color is the same as a gray tone. For example, color black 
corresponds to r = g = b = 0 and color white corresponds to r 
= g = b = L−1. The r, g and b coefficients in (1) are 
established as functions of L in order to make the number 
pairs {1, L}, {1, L

2
+1}, and {L, L

2
+1}, relatively prime. 

Thus, these relationships allow us to establish the inverse 
scalar to vector mapping or equivalently, the vector 
decoding function. The inverse mapping is then constructed 
as the following piecewise function for a given coded scalar 
s, 

(0, 0, 0)  s  0 
(s, 0, 0)  s [1, L 1] 

based on a vector to scalar mapping followed by single key 
numerical sorting. 

Our work is organized as follows: Section II, gives the 
mathematical background material used in Section III, in 
which the mapping-sorting technique is described as applied 

c(s)  





(, (  ) / L, s / (L
2  
1))  s  L

2  
1 

(2) 

to some color images. Finally, in Section IV we give the 
conclusions and a few pertinent comments to the research 
presented here. 
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In the third conditioned equality of (2), r = mod(s, L). 
Similarly, in the fourth conditioned equality, μ = mod(s, 
L

2
+1) and ρ = mod(μ, L). Also notice the use of the integer 

floor function for the “blue” coordinate in the last condition 
of (2). As will be shown in Section III, the computer tests 
are realized on 24-bit color images where each color channel 
is an 8-bit grayscale image. Hence, L = 2

8
 = 256 and the 

previous two equations are worked out numerically using, 
L−1 = 255, L

2
−1 = 65535, and L

2
+1 = 65537. We remark 

that since we are mapping three-dimensional vectors to a set 
of scalars, there are 6 possible scalar coding functions given 
by (1) by considering a different permutation of the 
coefficients {1, L, L

2
+1}. If another permutation of {1, L, 

L
2
+1} is selected, the vector decoding function in (2) should 

be changed accordingly. The use of (1) assumes that the 
packed matrix X is converted to a list of triplets using row- 
column or column-row scanning. 
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B. Sorting and Counting 
As explained in the last paragraph of Section II, the 

packed matrix X representing a color image is first converted 
to a list of 3D vectors in order to be mapped, using (1), to a 
single scalar set whose elements will appear in random 
fashion and many of them possibly repeated across the 
whole set. Briefly stated, the result obtained with the scalar 
coding function is a multiset of integral values in the range 
[0, L

3
+L−2]. Therefore, these integer values are interpreted 

as a list of single keys in a random access file that can be 
sorted quickly using appropriate fast algorithms. 

From the many available single key internal sorting 
algorithms, two of the fastest are the quicksort [7] and 
heapsort [8] algorithms. Our selection of the heapsort 
algorithm is based on the fact that for a large number of 

III. Color Palette Extraction 
From the explanation given previously in relation to 

function Distinct(v) displayed in (3) it is immediate that the 
first column of the two-dimensional output matrix A 
corresponds to the ordered list of scalar coded color pixels 
and serves as input to a second function displayed in (4), 
named BuildPal(v), that builds as image, although possibly 
smaller in size than the given color image, the palette of 
distinct colors. 

function BuildPal(v) 

m  rows(v); n   m 

for i  0 n 1 
elements, as in the case of color pixels in a given image, its 
computational complexity in the worst case (for an almost 
unordered list) is similar to the average case, which is not 
the same situation for the quicksort algorithm. The technical 
aspects just mentioned between quicksort and heapsort are 
fully explained in detail in [9]. Specifically, we use the 
sorting built-in functions provided by the Mathcad [10] 
software whose implementation follows the corresponding 
algorithm given in [11,12]. Recall that both quicksort and 
heapsort are not stable sorting algorithms, meaning that after 
a key list has been ordered, equal or repeated keys are 
brought together but do not retain necessarily their original 
relative order. However, since we are dealing with integer 

for  j  0 n 1 

k  i  n  j 

u  if (k  m 1, c(vk ), c(vm1 )) 

u  u
T

 

Ri j  u0 ;Gi j  u1 ; Bi j  u2 

P  augment(R, G, B) 

return P 

 

 
(4) 

numbers, stability is not an issue for the purpose of counting 
distinct colors [13] and extracting an image color palette. 

The simple computational procedure Distinct(v) with 
linear complexity, shown in (3), stores the first ocurrence of 
a given key or scalar coded pixel p in Ak 0 (1

st
 column) as 

well as the number of times c equal keys are found together 
in Ak 1 (2

nd
 column). Then, the number of rows in the output 

array A is the number of distinct elements in the sorted input 
vector v obtained using (1). 

function Distinct(v) 

v  stack(v, 1); m  rows(v) 

Again in (4), besides the programming reserved words 
function, for, if (as function), and return, the Mathcad 
built-in array functions rows and augment are used to 
simplify the corresponding pseudo-code. Note that, after 
calling this function, array P is a square packed matrix 
whose matrix components R, G, and B contain, respectively, 
the red, green, and blue channels of the extracted color 
palette. 

A. Palette Ordering 
In digital photo, image, and graphic design software, 

color reduction functions are available to quantize a color 
image, for example, to 256 colors in order to make easy the 

k  0; p  v0 

for i 1 

; c  1  

 
(3) 

display of the corresponding quantized color palette. 
Possible arrangements for quantized distinct colors are by 
index, luminance or hue ordering. For a given color image 

Ak 0 
 p ; Ak1  c ; c  c 1 

X, if p denotes the number of rows and q represents the 
number of columns, then the number of pixels in X is pq. 

if p  vi 

p  vi ; k  k 1; c  1 

return A 

 
In (3), besides the programming reserved words 

function, for, if, and return, the Mathcad built-in array 
functions stack and rows are used to simplify the above 
pseudo-code. Note that, after calling this function, the first 
column of A (2

nd
 subindex is 0) contains the coded color 

palette and variable k gives the color count (final value of 1
st
 

subindex). 

In this work, since the complete color palette is extracted 
without any quantization level, the way in which the palette 
is ordered is by index color, as found by scanning the color 
image from the top left corner pixel, (0,0),to the bottom right 
corner pixel (p−1,q−1) and follows the specific permutation 
selected for the scalar coding function given in (1) of the 
coefficients affecting the r, g, and b channels. Also, 
following procedure (4), the extracted color palette is 
reshaped as a square image that generally is smaller in size if 
compared to the input color image size. The use of the ceil 
function applied to the square root of m (distinct colors) is 
the lateral dimension of the desired palette. 

m 1 
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B. Computer Experiments and Results 

The mapping-sorting technique explained previously was 

applied to 50 public domain RGB color images of size 256 × 

256 pixels. Functions (1) and (2) as well as procedures (3) 

and (4) were implemented in Mathcad’s programming 

language and verified with Matlab. Figure 1 shows a subset 

of natural color images together with their extracted unique 

colors reshaped as a square image and Fig.2 depicts the 

corresponding 3D histograms in RGB space. In Fig. 1, the 

image color palette is enclosed with single pixel black 

border lines to emphasize its smaller size when compared to 

the input image size and, in Fig. 2, notice that smaller 

spherical neighborhoods, although barely noticeable, 

represent the unique colors. 

 

Similarly, Fig. 3 shows a subset of synthetic color images 

with the corresponding unique colors organized as a square 

image and Fig. 4 depicts the associated 3D histograms in 

color space. In this last figure, since the number of distinct 

colors in a synthetic image is much less than the number of 

pixels contained in the original image, the size of dominant 

color neighborhoods are significantly reduced. The 3D 

histogram representation in RGB color space shown in Figs. 

2 and 4 was realized using the ColorSpace software [14]. 

Figure 2. 3D histograms of natural color images (left) and 

3D histograms of extracted color palettes (right) Figure 1. A set of natural color images (left) and the 

corresponding extracted color palettes (right) 
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The mean time spent in all steps involved to count and 

extract the color palette was less than 750 milliseconds for 

each test image using a standard PC computer. Figure 5 

gives a block diagram with the steps required to implement 

the mapping-sorting technique. The overall computational 

complexity is of order m log m, where m = pq is the number 

of picture elements of an input color image X. 

IV. Conclusions 
In this paper we have discussed a novel approach to find 

the proper subset of a multiset of vectors consisting of its 
distinct elements, using as visual examples, RGB color 
images as sets of color pixels in three-dimensional space. 

The proposed technique maps a set of vectors to a set of 
scalars, uses the heapsort algorithm to order them, and 
remaps the unique distinct scalars to extract the color palette 
from a given image. 

Illustrative examples using public domain images were 
given showing their corresponding palettes and the exact 
color count, including the overall time spent in applying the 
mapping-sorting hybrid technique. Future work considers 
aspects, such as, the generalization of the direct and inverse 
mappings to higher dimensions and the realization of further 
tests for applications of mapping-sorting to data clustering in 
pattern recognition or segmentation of multispectral 
imagery. 

Figure 4. 3D histograms of synthetic color images (left) and 

3D histograms of associated color palettes (right) 

Figure 3. A set of synthetic color images (left) and the 

corresponding extracted color palettes (right) 



International Journal of Advances in Computer Science & Its Applications – IJCSIA 
Copyright © Institute of Research Engineers and Doctors 

Volume 9 : Issue 1- [ISSN : 2250-3765] - Publication Date: 10 May, 2019 

34 

 

 

Gonzalo Urcid received his B.Eng. (1982) and 
M.Sc. (1985) both from the University of the 

Americas in Puebla (UDLAP), Mexico, and his 

Ph.D. (1999) in Optical Sciences from the 
National Institute of Astrophysics, Optics, and 

Electronics (INAOE) in Tonantzintla, Mexico. 

Since 2001 is a National Researcher from the 

Mexican National Council of Science and 
Technology (SNI-CONACYT), and currently 

is an Associate Professor in the Optics 

Department at INAOE. His research interests 

include digital processing of multichannel 
images, artificial lattice neural networks, and 

pattern recognition. 

Rocío Morales Salgado received her B.Eng. 

(1994) and M.Ed. (1998), respectively, from 

the Autonomous University of Puebla (BUAP) 
and the Iberoamerican University (UIA). She 

obtained her Ph.D.(2006) in Information 

Technologies and Decision Analysis by Puebla 

State Popular University (UPAEP). Her 
research interests are software engineering, 

data science, and e-business. She is currently 

Chair and Professor of the graduate programs 

in Information Technology and Electronic 
Business as well as the Master's Degree in Data 

Science and Business Intelligence at UPAEP. 

Acknowledgment 

Gonzalo Urcid thanks the National Council of Science 
and Technology (SNI-CONACYT) in Mexico City for 
partial financial support through grant No. 22036. 

 

 

 
References 

 
[1] D. Knuth, “Evaluation of powers,” in The Art of Computer 

Programming, Vol. 2 (Seminumerical Algorithms 3rd Ed.), Reading, 
MA: Addison Wesley, 1998, pp. 461−485. 

[2] D. Knuth, “Permutations of a multiset,” in The Art of Computer 
Programming, Vol. 3 (Sorting and Searching 2nd Ed.), Boston, MA: 
Addison Wesley, 1998, pp. 22−35. 

[3] D. Lemire, M. Brooks, and Y. Yan, “An optimal linear time 

algorithm for quasi-monotonic segmentation,” Proceedings of the 5th 
IEEE International Conf. on Data Mining, Houston, TX, November 

 

[4] K. Aouiche and D. Lemire, “A comparison of five probabilistic view- 
size estimation techniques in OLAP,” Proceedings of the ACM 10th 
International Workshop on Data Warehousing and OLAP, Lisbon, 
Portugal, pp. 17−24, November 2007. 

[5] G. Urcid, L.D. Lara-R., and E. López-M., “A dendritic lattice neural 
network for color image segmentation,” Proceedings of SPIE, 
Applications of Digital Image Processing XXXVIII, San Diego, CA, 
Vol. 9599, pp. 95992O:1−10, August 2015. 

[6] G. Urcid, R. Morales-S., and G.X. Ritter, “Multivariate data mapping 
based on dendritic lattice associative memories,” Proceedings of the 
4th IEEE Latin American Conf. on Computational Intelligence, 
Arequipa, Peru, pp. 1−6, November 2017. 

[7] D. Knuth, “Quicksort,” in The Art of Computer Programing, Vol. 3 
(Sorting and Searching 2nd Ed.), Boston, MA: Addison Wesley, 1998, 
pp. 113–138. 

[8] D. Knuth, “Heapsort,” in The Art of Computer Programing, Vol. 3 
(Sorting and Searching 2nd Ed.), Boston, MA: Addison Wesley, 1998, 
pp. 144–158. 

[9] D. Knuth, “Sorting: Summary, history, and bibliography,” in The Art 
of Computer Programing, Vol. 3 (Sorting and Searching 2nd Ed.), 
Boston, MA: Addison Wesley, 1998, pp. 380–391. 

[10] Mathcad 15.0 (M045), “Sorting functions,” in Mathcad Help, PCT- 
Parametric Technology Corporation, 2015. 

[11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 
“Quicksort and Heapsort,” in Numerical Recipes, The Art of 
Scientific Computing, 3rd Ed., New York, NY: Cambridge University 
Press, 2007, pp. 423–428. 

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Sorting and 
Order Statistics,” Part II in Introduction to Algorithms, 3rd Ed., 
Boston, MA: The MIT Press, 2009, pp. 147−228. 

[13] D. Lemire, “Counting exactly the number of distinct elements: sorted 
arrays vs hash sets?,” at https://lemire.me/blog/2017/05/23/counting- 
exactly-the-number-of-distinct-elements-sorted-arrays-vs-hash-sets/, 
WordPress, 2017. 

[14] P. Colantoni, “3D color space visualization,” in ColorSpace User 
Manual Ver. 1.0, 2004, pp. 6−9. 

 

 
About Author (s): 

 

 

 

2005. 

Figure 3. Flow diagram of the steps involved in the mapping- 

sorting technique for color count and palette extraction 


