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Abstract — Thanks to genetic expression, biomarkers related 
to much kind of diseases could be obtained. However, depending 
on the previous experimental constraints, these biomarkers can 
become too many, especially if they are intended to be used in a 
classification process. Multi-Objective Genetic Algorithm 
(MOGA) has been thought of as a suitable solution to get a trade-
off among candidate biomarkers and classification accuracy. In 
this sense, genetic expression and Non Sorting Genetic Algorithm 
(NSGA) are combined in order to obtain the minimum number of 
possible genes that achieve the maximum classification accuracy. 
Only with a few genes, the classifier is expected to be more 
computationally efficient and faster than with all the genes, 
besides not endangering the final accuracy. 
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I. Introduction 
The human genome discovered has exponentially 

augmented the possibilities of analysis on human genetics 
through the bioinformatics support. This is so that the biologic 
knowledge about the human being is increasing due largely to 
advances in sequencing technologies as microarray or RNA-
seq. 

The analysis of gene expression profiles from these 
technologies have become fundamental because they allow to 
identify key genes that are though as potential biomarkers of 
the analysed disease.  

Although sequencing technologies offer the opportunity to 
see the whole biological system through the quantification of 
entire human genome, it is intrinsically an intractable problem 
due to the high dimensionality of the data.  

The gene expression quantification in both microarrays 
and RNA-seq is arranged as massive parallel information, 
where the set of features (genes) is usually much larger than 
the number of samples available. 

This very high difference among genes and samples is 
named as the curse of dimensionality [2,9] or more widely 
well-known in the literature as (NP)-hard problem. The 'large-
p small-n' paradigm has been addressed from different 
approaches in order to reduce its manifestation: on the one 
hand, through the integration of samples from multiple 
platforms and technologies; on the other hand, through the 
selection of relevant genes depending on the pursued 
objective. 

 

1: Information and Communications Technology Centre (CITIC-UGR). 
Univeristy of Granada, Spain. 

The first option is being developed extensively in the field 
of bioinformatics, which seeks to expand the total repertoire of 
samples and achieve a greater statistical significance of the 
available population sample. Integration can be done at 
different levels: platforms (Affymetrix, Illumina, etc.), 
technologies (microarrays, RNA-seq, etc.), omics (genomic, 
transcriptomic, methylation, etc.). 

The second option implies the considerable reduction of 
the repertoire of genes (usually in the order of thousands) from 
a selection carried out using machine learning techniques. This 
selection not only allows to reduce the complexity of the 
problem, but also maintains the recognition efficiency in 
addition to eliminating irrelevant or noisy genes. Therefore, 
genes selection seems to be very valid to reduce the 
dimensionality, thereby discarding the ambiguous genes for 
achieving a high classification accuracy [6].  

Genetic algorithms (GAs) [12,13] evaluate and evolve the 
population using machine learning techniques. Thanks to this, 
the algorithm can produce robust solutions that are important 
in fields like bioinformatics because real disease and people 
are involved.   

Data reductions techniques are very important when there 
are gene expression data due to the high dimensionality of the 
features comparing to the samples available. Therefore, 
machine learning, GA, feature selection techniques have been 
very used in the last years to reduce the dimension of feature 
genes and to avoid the curse of dimension.  

Most real-world optimization problem are affected by 
more than one conflicting objectives. For this cases, there are a 
kind of GA called Multiple Objectives Genetic Algorithm 
(MOGA) [11] that use different objectives for search the 
optimal or sets of optimal solutions (Pareto front). In this 
sense, the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) [4] will be used in this study. This algorithm 
allows to minimize the number of genes but maximizing the 
accuracy achieved by this genes in classification. 

Before the apply the GA is necessary to extract the data 
from their respective technologies. Two sequencing 
technologies has been used to compute the genes expression, 
which are explained below. 

A. Microarray technology 
Microarray is a method that allows the measurement of the 

value expressions of a large number of genes simultaneously 
from a collection of microscopic DNA spots attached to a 
solid surface. This technology is based on the DNA 
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hybridization process, so that DNA is hybridized for each of 
the spots that represent one gene value expression. Once the 
step is finished with a laser, the expression values are read and 
written in a file with the extension .CEL. 

Once microarray data are available, all of them are 
processed and filtered from a quality analysis to be later 
normalized. Once this was done, the last step is the integration 
of all microarrays. VirtualArray tool [7] has been used for the 
integration process. 

B. RNA-seq technology 
This technology appeared as a revolutionary tool for 

transcriptome and as a natural evolutionary step in the study of 
the genome after the massive use of microarray technology. In 
this sense, one of the most advantageous aspects is that 
although RNA-seq can be used only for transcriptome 
profiling, it also can be combined with other functional 
genomics methods to enhance the analysis of gene expression. 
Expression is quantified by counting the number of reads 
mapped to each locus in the transcriptome assembly step. This 
expression level can be calculated for exons or genes using 
contigs or reference transcript annotations. These observed 
RNA-seq read counts have been robustly validated against 
previous technologies such as microarrays or quantitative 
polymerase chain reaction (qPCR) [10]. 

II. Material and Methods 
The (NP)-hard problem was minimized and approached 

from a combination of both options: sample integration and 
gene selection. 

All analyzed RNA samples were obtained from NCBI 
GEO web platform [1]. 108 samples from microarray series 
and 6 samples from RNA-seq samples were finally integrated.   

Table 1 shows a summary about the series used and their 
origin. As it can be seen, there are series from different 
countries, and thus there are samples from different ethnic 
groups. Furthermore, there are different sequencing 
technologies in the experiment including samples from 
Affymetrix [5] and Illumina [8]. Moreover, there are data from 
different generation sequencing. In summary, samples have 
been integrated from different generation sequencing, 
technologies, platforms and countries, bringing all of them 
heterogeneity to the study. 

Both microarray and RNA-seq data have passed a strict 
pipeline. Microarray samples require restrictive quality 
analysis to discard non-representative samples which took 
place due to incorrect acquisition, as well as normalization 
during pre-processing in order to adapt the range of 
quantification variability of the samples considered. 

In our experiment, 98 genes comply the statistical 
restrictions of logarithmic fold change (| logFC ≥  2 |) and p-
value ≤ 0.001 to form the final ranking of relevant genes 
considered as potential biomarkers of the disease. logFC 
represents the difference between breast cancer and control 
expressed values, whilst p-value represents the probability of 

obtaining a result equal or higher than what it was observed 
when the null hypothesis is true. 

Series Technology Quality 
Samples 

Excl. 
Outliers 

Samples 
Origin 

GSE52712 Microarray 19 1 Manchester 
UK 

GSE40987 Microarray 10 0 Boston 
USA 

GSE52262 Microarray 16 0 Houston 
USA 

GSE12790 Microarray 20 1 San 
Francisco 

USA 
GSE46834 Microarray 8 0 New York 

USA 
GSE68651 Microarray 35 1 Southampton 

UK 
GSE78011 RNA-seq 3 0 Louisville 

USA 
GSE81593 RNA-seq 3 0 New York 

USA 
TOTAL  114 3  

TABLE I. INPUT SERIES, TECHNOLOGY,  NUMBER OF 
SAMPLES/OUTLIERS AND SAMPLES ORIGIN 

Once the 98 expressed genes have been calculated, a GA was 
used. All the process followed for achieved this is explained in 
the subsections below. 

A. Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) 
GAs are algorithms for optimization inspired by the 

biological mechanisms of reproduction and evolution. 
Normally, GAs try to maximize or minimize an objective 
using a function, but this is only when the problem have one 
objective.  
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Figure 1.  Pipeline followed for feature selection using NSGA-II 

 

 

In the case of this study talks about a multi-objective 
problem due to is necessary minimize the number of genes but 
maximizing the final accuracy achieved when a classifier is 
used with these genes.  

Hence, NSGA-II have been used. This GA allows reach 
the optimal solutions of a optimization situation when a multi-
objective problem appears and calculated a Pareto front or 
optimal non-dominated solutions front. So, if a point is better 
than other points in all of objectives, this is non-dominated by 
these worst points. The non-dominated points of the last 
generations make the optimal Pareto front. All the 
intermediate process is explained then (the block diagram is 
presented in Fig.1). 

First, the initial population is generate with the fixed-
length binary strings for N individuals (the binary codification 
is presented in Fig.2) . 

 

Figure 2.  Binary codification of the NSGA-II for selecting the most 
relevant genes 

 Each string shows a feature subset and each position in the 
string are coded as one in this case if the gene have been 
selected or zero if not. The next step is calculate the fitness for 
the survival of each feature subset. Such as it said before, two 
objective will be used so there are two fitness functions, one 
for minimize the genes and other for maximize the accuracy. 
The best subsets will be selected for the crossover or mutation 
for the next generation. The mutation changes some of the 
values in a subset     randomly. In the other hand, crossover 
join different features from a two subsets (parents) into a new 
subset (child). This process will be repeat in an iterative 
process until the maximum number of generation will be 
reached or until a stop criterion will be achieved. 

B. Support Vector Machine (SVM) 
For calculated the second objective function, a SVM has 

been used in order to obtain the accuracy with the selected 
genes of the first objective functions. This algorithm is based 
on the idea of separating the different categories in a problem 
through a hyperplane. The algorithm calculates the maximum-
margin hyperplane that maximizes the distance between 
different classes. In one dimension, this hyperplane would be a 
single point. With two dimensions, a line, and with three 
dimensions a plane would be needed in order to separate the 
classes. This model could be extrapolated mathematically to 
higher dimensions [14]. 

The Fig.3 shows the pipeline followed for this study. 

 

Figure 3.  Pipeline followed for simultaneously using microarray data 
and RNA-Seq data, in conjuntion with NSGA-II, for selecting the most 

representative genes in breast cancer 
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III. Results and Discussion 
The final set of 98 expressed genes have been analysed. 

An exhaustive list is shown in Table 2. At this point, it should 
be remembered that the 98 genes shown in this table 
correspond to those genes that appeared as differentially 
expressed from the analysis of the complete dataset. 

This table is formed by five statistics values computed by 
the limma package from Bioconductor [3]. The log-fold 
change (logFC) represents the difference between breast 
cancer and control expressed values. If | logFC ≥ 2 |  it means 
that there exists significance differences between cancer and 
control values. The second value in Table 2 is the the 
moderated t-statistic, which has the same interpretation as the 
normal t-statistic but the standard errors have been reduced 
between the genes, effectively obtaining information from the 
set of genes to help with inference about each individual gene. 
The next value is the P-Value (P.Val) which represents the 
probability of obtaining a result equal or higher than what it 
was observed when the null hypothesis is true. The B-statistic 
(B) is the log-odds that a given gene is deferentially expressed. 

Genes 
names 

∣l o g F C∣≥2 t p-val B 

KRT19 7.993 11.072 8.124E-21 36.607 
KRT6A -7.800 -13.558 3.347E-27 51.214 
NNMT -7.584 -11.544 4.951E-22 39.384 
VIM -7.261 -15.117 3.917E-31 60.213 

AKR1B1 -6.943 -11.437 9.357E-22 38.753 
SFRP1 -6.866 -18.820 4.925E-40 80.570 
TGFBI -6.701 -14.299 4.424E-29 55.515 
MT1E -6.650 -15.281 1.537E-31 61.142 

C3 -6.569 -15.928 3.857E-33 64.805 
BMP7 6.406 13.058 6.330E-26 48.292 
KRT5 -6.229 -9.125 7.460E-16 25.273 

CXCL1 -6.145 -13.526 4.030E-27 51.030 
S100A2 -6.016 -9.582 5.249E-17 27.902 
KRT7 -5.991 -11.975 3.850E-23 41.922 
TNS4 -5.866 -25.125 1.651E-53 111.284 

EEF1A2 5.764 8.956 1.979E-15 24.307 
CLMP -5.631 -11.238 3.037E-21 37.583 
IFI16 -5.543 -9.230 4.073E-16 25.872 

LAMC2 -5.426 -12.346 4.247E-24 44.112 
IGFBP4 5.412 13.779 9.173E-28 52.501 

FAM83A -5.328 -14.042 1.974E-28 54.028 
SYTL2 5.283 11.883 6.617E-23 41.384 
SNAI2 -5.169 -9.731 2.204E-17 28.762 
DNER -5.152 -11.859 7.620E-23 41.244 

PRKCDBP -5.105 -10.241 1.105E-18 31.730 
ALOX15B -5.088 -16.524 1.353E-34 68.133 

IGFBP5 5.085 8.165 1.755E-13 19.871 
BNC1 -5.072 -16.335 3.889E-34 67.085 

GFRA1 5.021 6.872 1.958E-10 12.955 
DSC3 -4.999 -17.145 4.296E-36 71.561 

PTGES -4.990 -17.489 6.479E-37 73.440 
TFF1 4.925 4.857 3.168E-06 3.497 

RAB25 4.864 8.521 2.368E-14 21.851 
KRT14 -4.863 -6.445 1.768E-09 10.794 

EFEMP1 -4.855 -10.020 4.059E-18 30.440 
SLPI -4.793 -10.194 1.455E-18 31.457 
SDPR -4.728 -12.002 3.264E-23 42.086 
FBP1 4.707 6.789 3.017E-10 12.530 

EPCAM 4.662 8.150 1.906E-13 19.790 
GNA15 -4.570 -15.676 1.614E-32 63.382 
HTRA1 -4.527 -10.906 2.178E-20 35.627 

RAC2 -4.524 -11.727 1.669E-22 40.465 
CLCA2 -4.411 -9.272 3.189E-16 26.115 
GPX1 -4.384 -6.773 3.281E-10 12.448 
EMP3 -4.383 -9.299 2.728E-16 26.269 

SERPINB5 -4.371 -8.314 7.600E-14 20.698 
TSPYL5 4.317 6.297 3.735E-09 10.062 
GSTP1 -4.242 -5.846 3.433E-08 7.892 

SLC2A10 4.216 11.411 1.088E-21 38.602 
LDHB -4.182 -5.892 2.745E-08 8.111 

VSTM2L -4.146 -11.277 2.409E-21 37.813 
BIRC3 -4.079 -13.064 6.110E-26 48.327 

ABLIM3 -4.000 -12.337 4.481E-24 44.059 
TFCP2L1 -3.874 -11.847 8.202E-23 41.171 

DSG3 -3.820 -8.387 5.035E-14 21.105 
SLC26A2 -3.798 -13.491 4.947E-27 50.826 
C3orf14 3.763 7.772 1.558E-12 17.715 
IL20RB -3.667 -8.868 3.262E-15 23.812 
FXYD5 -3.623 -5.585 1.191E-07 6.679 
GSTM3 3.590 9.622 4.161E-17 28.133 
ADRB2 -3.572 -9.968 5.512E-18 30.136 
EMP1 -3.535 -7.622 3.543E-12 16.905 

IGFBP7 -3.530 -4.676 6.866E-06 2.751 
GJB5 -3.517 -12.456 2.225E-24 44.755 

HENMT1 3.514 7.953 5.732E-13 18.702 
ZBED2 -3.507 -6.452 1.705E-09 10.830 
MSLN -3.504 -8.558 1.917E-14 22.061 
IL18 -3.415 -9.270 3.223E-16 26.104 

TRIM29 -3.395 -9.588 5.081E-17 27.934 
OSR2 3.346 8.380 5.238E-14 21.066 

LAMB1 -3.346 -6.972 1.162E-10 13.468 
UCP2 3.332 5.788 4.539E-08 7.620 
CPVL -3.331 -7.870 9.043E-13 18.253 
KRT81 -3.320 -5.133 9.424E-07 4.670 
S100A8 -3.292 -5.698 6.982E-08 7.200 
TP53I3 -3.242 -11.149 5.160E-21 37.057 
FOXA1 3.226 5.576 1.241E-07 6.640 

SLC24A3 3.211 6.190 6.356E-09 9.541 
PNLIPRP3 -3.200 -7.998 4.470E-13 18.948 

INHBB 3.180 7.756 1.698E-12 17.630 
RAB38 -3.129 -9.539 6.781E-17 27.649 
ZBTB16 -3.112 -8.869 3.251E-15 23.816 

PLD5 -3.070 -11.039 9.925E-21 36.408 
DFNA5 -3.047 -7.565 4.835E-12 16.599 
FKBP5 -2.988 -10.435 3.528E-19 32.863 
CD109 -2.986 -7.196 3.541E-11 14.637 
CASP1 -2.955 -6.388 2.367E-09 10.509 

SULT1E1 -2.903 -7.749 1.763E-12 17.594 
FAM174B 2.779 5.557 1.353E-07 6.555 
PDZK1IP1 -2.752 -7.028 8.611E-11 13.743 

TNNI2 -2.750 -7.896 7.842E-13 18.393 
CAV1 -2.727 -5.028 1.503E-06 4.217 
IRX4 -2.714 -7.628 3.433E-12 16.936 

KRT80 2.706 5.268 5.131E-07 5.259 
FOXO1 -2.649 -8.921 2.408E-15 24.113 
SNCA -2.635 -8.533 2.211E-14 21.919 
TBL1X 2.565 9.676 3.043E-17 28.442 

TABLE II.  List of 98 expressed genes obtained with limma 
as the intersection of microarray, RNA-Seq and integrated 
dataset 

Such as said before, two objective functions have been 
used in order to achieve the optimal solution for the problem. 
The first function is the number of active chromosome genes, 
in this case the number of genes used for the classification. 
The second function is the accuracy reached with the number 
of genes selected by the first function. So, the GA will 
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minimize the number of selected genes but maximizing the 
accuracy achieved. 

In this sense, the chromosome have 98 genes because the 
study has 98 expressed genes and an initial population of 200 
individuals. Furthermore, the GA has been done crossover 
between the population during 40 generations with a crossover 
rate equal to 0.7 and a mutation probability of 0.1. 

 

Figure 4.  Optimal Pareto front calculated by the Genetic Algorithm 
NSGA-II 

The result can be seen at the Fig. 2. Three non-dominant 
points appear in the plot, these points show the best solutions 
for the problem of this study called Pareto front. This 
representation has one point with one gene, one point with two 
genes and one point with three genes. This last point have two 
overlapped points because there are two combinations of three 
genes that achieved the maximum accuracy. These genes and 
their results are shown by the Table 3. Also, the expression 
levels of these genes for cancer and control samples have been 
represented at the Fig. 4. The values show that all genes 
except one of them (IFI16) have the expression levels with 
many differentiation between cancer and control samples. This 
means that they are good biomarkers for breast cancer 
classification. 

Gene Names Accuracy 

PTGES 69.047 % 

DSC3, SLC26A2 97.619 % 

FKBP5, GSTM3, IFI16 100 % 

INHBB, PLD5, PTGES 100 % 

TABLE III. Optimum genes calculated by the GA for achieving the 
maximum accuracy 

 

Figure 5.  Expression levels of the genes that appear in Pareto front 

IV. Conclusions 
An heterogeneous data integration from different 

technologies (microarray and RNA-seq) that quantify the 
quantity of RNA in human biological samples is carried out in 
this work. 

Once this integration was done 98 expressed genes that 
allow difference between breast cancer and control samples 
were achieved.  

A multi-objective genetic algorithm (NSGA-II) has been 
used in order to minimize the number of genes needed  in the 
classification process but without endanger the accuracy. 

Finally, a Pareto front with 4 non dominated point has 
been calculated. This points ensures the maximum accuracy 
but minimizing the number of genes. Only with one genes the 
accuracy is 70 %, but the most important question is that only 
using two or three genes the final accuracy is between 97\% 
and 100 %, so the main purpose of this study have been 
achieved and the fact of use a GA is a great way of reduce the 
dimensionality of the feature in biological data like genes. The 
most important novelty is apply the GA to an integrated 
dataset from different technologies like microarray and RNA-
seq. 
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