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Abstract— This paper proposes an enhanced fault-tolerant 

routing algorithm for the OTIS-2D-tours interconnection 

network,. Many researchers work have been presented on the 

Torus related topics, but not often research addressed the OTIS-

Torus. In the proposed algorithm, each node A starts by 

computing the first level unsafety set, , composed of the set of 

unreachable direct neighbours within the OTIS-2D-tours 

topology. It then performs m-1 exchanges with its neighbours to 

determine the k-level unsafety sets  for all 1  k  m, where m is 

an adjustable parameter between 1 and 2n+1; diameter of the 

network. The k-level unsafety set at node A represents the set of 

all faulty nodes at Hamming distance k from A which either 

faulty or unreachable from A due to faulty nodes or links. 

Equipped with these unsafety sets we show how each node 

calculates numeric unsafety vectors and uses them to achieve 

efficient fault-tolerant routing for the OTIS-2D-tours.  

Keywords Interconnection Networks, OTIS-2D-Torus, Fault-

Tolerant Routing Algorithm, Unsafety Vectors. 

I. Introduction 
The binary n-cube is one of the most famous topologies that 

have been combined within OTIS-network due to its attractive 

topological properties, e.g. regular structure, low diameter, 

and ability to exploit communication locality. Several 

experimental and commercial systems have been built using 

the factor cube network including the NCUBE-2 [1], Intel 

iPSC [2], Cosmic Cube [3], and SGI Origin 2000 

multiprocessor [4].  
The well-organized inter-processor communication is the key 

to high-quality system performance. Routing algorithms have 

huge effect on network performance, as it is in charge for 

selecting a network path between two nodes; source and 

destination; involved in a one-to-one communication. Routing 

in fault-tolerant and fault-free n-torus (or the torus for short) 

and its variants has been extensively studied in the past (e.g. 

see [5,- 8]) and hardly you may find any fault-free or even 

fault-tolerant routing algorithm in OTIS-Torus. As the 

network size scales up the probability of processor and link 

failure also increases. It is therefore essential to design fault-

tolerant routing algorithms that allow to route messages 

between non-faulty nodes in the presence of faulty 

components (links and nodes). Few fault-free routing 

strategies have been proposed in the literature for the Torus 

[5]. Most of these algorithms have assumed that a node knows 

either only the status of its neighbours (such a model is called 

local-information-based) or the status of all the nodes (global-

information-based).  Local-information-based routing yields 

sub-optimal routes (if not routing failure) due to the 

insufficient information upon which the routing decisions are 

made. Global-information-based routing can achieve optimal or 

near optimal routing. However, high communication overhead is 

involved in such algorithms to maintain up-to-date fault 

information at all network nodes. 

The main challenge is to design and build a simple and effective 

algorithm to represent limited global fault information that 

allows optimal or near-optimal routing. Up to my knowledge, 

this is the first attempt to design a limited-global-information-

based algorithm for the OTIS-Torus based on the set of unsafety 

vectors.  

The new proposed limited-global-information-based routing 

algorithm for the OTIS-2D-Torus based on the set of unsafety 

vectors utilizing the attractive topological properties of OTIS-

Torus network [9] to achieve an efficient fault-tolerant routing. 

Each node in OTIS-Torus P starts by determining the set of 

unreachable immediate neighbours due to faulty nodes and links. 

This set is referred to as the first-level unsafety set at node P and 

is denoted   
 . Then, each node P performs an k-1 exchanges 

with its immediate neighbours to determine the l-level unsafety 

set   
  for all 1  l  n, where k is an adjustable parameter 

between 1 and 2n+ 1  for an n=2;  dimensional OTIS-2D-Torus 

where 2n+ 1; 5; is the longest path between any 2 nodes; the 

diameter. The l-level unsafety set   
  represents the set of all 

nodes at distance l from P which are faulty or unreachable from 

node P due to faulty links which causing a network partitioning. 

Equipped with these unsafety sets, each node calculates numeric 

unsafety vectors and uses them to achieve efficient fault-tolerant 

routing algorithm. The larger the value of k is the better the 

routing decisions are, but at the expense of more computation 

and communication overhead.  

II. Notations and Definitions 
The 2D-dimensional undirected graph binary 2D-Torus is one of 

the well known networks which have been used in real life 

systems [5, 9, 10].  

The 2D-Torus has 
2n  

vertices (nodes) where n is the number of 

node at each row or column. Each node P is labelled in the form 

P=p1p0, where each pi digit satisfies: 0  pi < n. Two nodes 

A=a1a0 and B=b1b0 are joined by a link if, and only if, there 

exists i, 0  i < n, such that 1 ii ba  (mod n) and jj ba   

for ji  .  

The 2D-Torus has a degree of 2- Dimension; and a diameter of 

n where n is the number of nodes at each row or column. Figure 
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A
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1 illustrates a 2D-Torus where n= 3, and 9 nodes. The shortest 

path between nodes A and B is equal to their Lee distance [11] 

given by  

01),( wwBAdL  , where  

wi = ),(min
20

iiii
i

banba 


. 

The Hamming distance between two nodes A and B, denoted 

H(A, B), is the number of digits at which their labels differ. A 

path between A and B is an optimal path if its length is equal 

to dL(A,B). 

A routing algorithm R for a network G can be viewed as a 

function that returns the address of the next node to visit in 

order to achieve routing between a given source and a given 

destination. A fault-tolerant routing algorithm is a routing 

algorithm that is able to function in a network with faulty 

components (nodes and links). 

Consider two nodes A and D where A is the source and D is 

the destination of a message exchange. Let 
)( iA and 

)( iA  

represent the two neighbours of node A along the i
th

 

dimension and let 
)( iA  denote

)( iA  or 
)( iA . The symbol 

i denotes the positive or negative direction along dimension 

i. If ii da  , a neighbour 
)( iA  of A is called a preferred 

neighbour for routing from node A to D if  dL(
)( iA , D) = 

dL(A, D) - 1. We say in this case that i is a preferred 

direction. If ai  di, a neighbour 
)( iA  such that dL(

)( iA , D) 

 dL(A, D) is called a spare neighbour. Neighbours other than 

preferred or spare are called disturb neighbours. For routing 

from A to D, a disturb neighbour 
)( iA  of A corresponds to 

the case ai = di and therefore the i
th

 digit is disturbed. Routing 

through a disturb neighbour increases the total routing 

distance by at least two over the minimum distance. Routing 

through a spare neighbour increases the total routing distance 

by at least one over the minimum distance. A minimal path 

can be obtained by performing a preferred direction move at 

every routing step. With respect to routing from node A to D, 

node T is called a preferred transit node if dL(T, D)< dL(A, D). 

We make the following assumptions for the proposed 

algorithm and performance study. Similar assumptions have 

been made in earlier related works, e.g. [5].  

i)  A faulty k-ary n-cube contains faulty nodes and/or 

links. The fault pattern remains fixed for the duration 

of calculations of unsafety sets. In other words, the 

faulty sets calculation has to be restarted if additional 

faults occur before completing the calculation. 

ii) Each node can determine the status of its own links 

and the status of its neighbouring nodes. 

iii) Node failures are fault-stop failures. 

 
In an OTIS-2D Torus network, N = n

4
 processors are divided 

into n
2
 groups to form a two-dimensional lattice. Each group is 

basically a two-dimensional Torus (2D mesh with wraparound 

connections) with n rows and n columns. Let us denote node A is 

placed in the (p1p0) position of the (g1g0) group, then the 

combined address will become form node A is (g1g0,p1p0) where 

g1g0 is the group address and p1p0 is the node address within a 

specific group and for 0 ≤ pi,gi< n. Therfore, within each group, 

two nodes placed at (x1x0) and (y1y0) are connected if and only if 

x1 = (y1 ± 1) mod n and x0 = y0 or x0 = (y0±1) mod n and x1 = y1. 

For group communication, the node A(g1g0,p1p0) is connected to 

node B(p1p0,g1g0) via an optical link. We assume that all the 

links are bidirectional. As an example the OTIS-2D-Torus is 

shown in Figure. 1 for n = 3. In this figure, the indices for each 

group are shown below it in boldface and the processor indices 

are shown adjacent to it. It possesses several topological 

properties that can be exploited in efficient mapping of parallel 

algorithms. 

We differentiate the electronic and optical links as follows: (i) 

optical links have larger bandwidth than electronic links and (ii) 

transfer times including latency are different along optical and 

electronic links [6]. As the channel capacity, transmission 

property and mechanism of these two links are different; we 

keep a separate count for data movement on these links. We 

represent data movement on electronic link by electronic move 

and that on optical link by OTIS move for analyzing the time 

complexity of our proposed algorithms. These two moves 

actually provide the total communication latency required by the 

algorithms. We also count the number of different primitive 

mathematical operations per iteration for each of the algorithm 

to add for a better understandability of our proposed algorithms. 

 

 
Figure 1: 2D-Torus where n=3 
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Figure 2: OTIS-2D-Torus where n=3 

In the OTIS-2D-Torus the address of a node u = x, y from V 

is composed of two components, each component is formed of 

two digits x1x0,y1y0. Figure 2 shows an 81 processor OTIS-

Torus, the notation g, p is used to refer to the group and 

processor addresses, respectively. Two nodes g
1
, p

1
 and g

2
, 

p
2
 are connected if, and only if, g

1
 = g

2
 and (p

1
, p

2
)E0 (such 

that E0 is the set of edges in torus network) or g
1
 = p

2
 and p

1
 = 

g
2
, in this case the two nodes are connected by transpose edge. 

The distance in the OTIS-Torus is defined as the shortest path 

between any two processors, g
1
, p

1
 and g

2
, p

2
, and involves 

one of the following forms [12]: 

i- When g
1
 = g

2
 then the path involves only electronic 

moves from source node to destination node. 

ii- When g
1
  g

2
 and if the number of optical moves is 

an even number of moves and more than two, then 

the paths can be compressed into a shorter path of the 

form: g
1
, p

1
 

E  g
1
, p

2
 

O  p
2
, g

1
 

E  p
2
, 

g
2
 

O  g
2
, p

2
 where the symbols O and E stand 

for optical and electronic moves respectively. 

iii- When g1  g2, and the path involves an odd number 

of OTIS moves. In this case the paths can be 

compressed into a shorter path of the form:  

 g1, p1 
E

 g1, g2 
O

 g2, g1 
E

 

g2, p2.      

The most important topological properties of the OTIS-2D-Torus 

including the following [13]: 

1. Size: If the torus factor network of size N; 2
n
; when is the 

number of nodes at each dimension; then the size of the 

OTIS-2D-Torus is N
2
.  

2. Degree: Let g, p be any node in OTIS-Torus. Then the 

degree (or deg) of the OTIS-2D-Torus is as follows: 








 pgifp

pgifp
pg

G

G

torusDOTIS      1)(deg

          )(deg
),(deg

0

0

2
 

Figure 3: The algorithm of_Unsafety_Sets that determines the faulty 

set for node A. 

3. Number of Links: Let l0 be the number of links and N be the  

number of nodes in the torus network, then the number of 

links in the OTIS-2D-Torus = NlNN  0

2 2/)( . 

4. Length: Let g
1
, p

1
 and g

2
, p

2
 be two different nodes in the 

OTIS-Torus. To transmit data originated in the source node 

g
1
, p

1
 to the destination node g

2
, p

2
 we follow one of the 

three possible paths shown above i, ii, and ii. The length of 

the shortest path between the nodes g
1
, p

1
 and g

2
, p

2
 is: 

     

















212121

1221

2121

     )2),(),( 

,1),(),(min(

                              ),(

ggifggdppd

gpdgpd

ggifppd

Length  

where d(p
1
, p

2
) is the length of the shortest path between any two 

processors g
1
, p

1
 and g

1
, p

2
. 

5. Diameter: Let n is the diameter of the torus network, the 

diameter of the OTIS-Torus is 2n+1. 

III. The Unsafety Vectors Fault-
Tolerant Routing Algorithm 

In this section we introduce the adapted fault-tolerant routing 

algorithm, based on the concept of unsafety sets (defined below). 

Before presenting the new algorithm, we first discuss how a 

node in the OTIS-Torus calculates its unsafety sets. 

The calculation of the unsafety sets is as follows: 

Definition 2: The number of direct neighbours np of a node A, 

<gA,pA>, is defined as:  










                        1

                   

Otherwisen

pgifn
np

AA

 

Definition 3: The first-level unsafety set  of a node A is 

defined as 

AS1  
= 

npi

i

Af
1

, where i

Af  is given by 








                        

         }{ )()(

Otherwise

faultyisAifA
f

ii
i
A


  

It should be clear that an isolated node A is associated with first-

level unsafety set containing np addresses of faulty nodes, i.e., 

npS A 1 . If for some node A, 11  npS A
 then node A is 

called a dead-end node. 

Each node uses the unsafety set to determine the faulty set FA, 

AS1

Algorithm Find_Unsafety_Sets (<gA,pA>: node) 

 /*  called by node A to determine its faulty set FA */ 

AS1
= set of faulty or unreachable immediate neighbours; 

 FA= AS1
; 

  for k := 2 to m do // diameter  
      { 

          for i:=1 to n do 

                if  )(i

Ap  FA  then        { 

                       send FA  to 
)(i

Ap ; 

           receive FA
(i)

  from 
)(i

Ap ; 

          FA = FA   FA
(i);    } 

 if  p
A
≠ g

A  { 

                      send FA  to < g
A, pA>; 

          receive F
< g

A, pA>
  from < g

A, pA>; 

         FA = FA   F
< g

A, pA>
  ;   } 

   for k := 1 to m do 

 k,pg,pgdF,pgS BBAAABB

A

k  ),(ist 

End. 
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which comprises those nodes which are either faulty or 

unreachable from A due to faulty nodes or links. This is 

achieved by performing m-1 exchanges with the reachable 

neighbours. After determining FA, node A calculates m 

unsafety sets denoted 
AS1 , 

AS2 ,…, 
A

mS  (defined below), 

where m is an adjustable parameter between 1 and 2n+1. 

Definition 4: The k-level unsafety set ,1 , mkS A
k   for 

node A is given by 

  kBAdFBS A

A

k  ),(  

The k-level unsafety set 
A
kS  represents node A‘s view of the 

set of nodes at distance k from A which are faulty or 

unreachable from A due to faulty nodes and links. Notice that 

if the network is disconnected due to faulty nodes and links, 

A‘s view about unreachable nodes may not be accurate. In this 

case massage of Unreachability may occur. Figure 3 gives an 

outline of the Find_Unsafety_Sets algorithm that node A uses 

it to determine it‘s faulty and unsafety sets. 

With respect to a given destination node, D, in an OTIS- Torus 

network a neighbour 
)(iA  of node A is called a  

preferred neighbour for the routing from A to D if the i-th bit 

of the processor address of A  D is 1 if both are in the same 

group or the i-th bit of the processor address of A  the group 

address of D is 1. We say in this case that i is a preferred 

dimension. Neighbours other than preferred neighbours are 

called spare neighbours. Routing through a spare neighbour 

increases the routing distance by at least two over the 

minimum distance. In general, a preferred neighbour is one 

step closed to the destination while a spare neighbour 

increases the routing distance two or more steps over the 

minimum distance depending of the type of the next move 

(electronic or optical). An optimal path can be obtained by 

routing through all preferred dimensions in some order. A 

node T is called an (A, D)- preferred transit node if any 

preferred dimension for the routing from A to T is also a 

preferred dimension for the routing from A to D. 

IV.The Unsafety Vectors Routing 
Algorithm 

For a given source-destination pair of nodes 

(<gA,pA>,<gD,pD>), we define the (A, D)-unsafety vector 

= ),...,,...,( ,,,
1

DA
m

DA
k

DA uuu  where its 
thk  element is 

given by 
DA

ku ,
= |{ T  , such that T is an (A,D)-preferred transit 

node}|. 

In other words, 
DA

ku ,
is the number of faulty or unreachable 

(A, D)-preferred transit nodes at distance k from <gA,pA>. 
DA

ku ,
can be viewed as a measure of routing unsafety at 

distance k from <gA,pA>, hence the name unsafety vectors for 

. We also define an ordering relation ‗<‘ for numeric 

vectors as follows.  

Definition 5:  

For any two numeric vectors U = (u1, u2,…, um) and V = (v1, v2, 

…, vm), U < V iff  i, 1  i  m, such that ui < vi, and uj = vj for 

all j < i.  

Figure 4 shows the Unsafety_Vectors algorithm that each node 

in the network applies to route a message towards its destination 

node <gD,pD>. 

 
Algorithm Unsafety_Vectors (M: message; <gc,pc>,<gd,pd>: node) 
/* called by current node <gc,pc> to route the message M to  

   its destination node <gd,pd> */ 

if <gc,pc> is source node then M.Route_distance = 0 

if Route_distance<= dist(pc,pd)+dist(gc,gd) +( 2n+1) * No_FaultyNodes  then {  

M.Route_distance:=M.Route_distance + 1 
if gc= gd and pc= pd then exit; /* destination reached */ 

if gc= gd then route(<gc,pc>,<gd,pd>)  /*  curr & dest. at the same group */ 

if (dist(pc,pd)+dist(gc,gd)+2)<(dist(pc,gd)+dist(gc,pd)+1) and the two optical       
    moves (gcpd→ pdgc, pdgd→ gdpd) are not faulty then  

    { if pc= pd then move m to < pc, gc> 

       else route(<gc,pc>,< gc, pd>) } 
else if the optical move (gcgd→ gdgc) is not faulty then 

    { if pc= gd then move m to < pc, gd> 

       else route(<gc,pc>,<gc,gd>) } 
   else if  gc ≠pc and the node<pc, gc > is not faulty 

    then  send M to <pc, gc >    /* disturb the message*/ 
} 

 else  looping  

End. 
Function route(<gc,pc>,<gd,pd>:node) 

{if  a preferred non-faulty neighbour with least 

     ( ,D)-unsafety vector  And  is not dead-end 

      then    send M to  

     elseif  a spare non-faulty neighbour with least  

     ( ,D)-unsafety vector  And is not dead-end; 

       then  send M to  
     else if  gc ≠pc and the node<pc, gc > is not faulty 
    then  send M to <pc, gc >    /* disturb the message*/ 

      else failure /* destination unreachable */ } 

Figure 4: A description of the proposed Unsafety vectors routing algorithm. 

Example 1: Consider the OTIS-2D-Torus depicted in Figure 3 

where the source node A=1001, the destination node D=0000, 

and let m=1. According to the unsafety vectors algorithm, the 

source node A will route message to a preferred neighbor 

associated with the least number of preferred faulty nodes in its 

unsafety sets, which is node 0110 via optical link, note that the 

preferred neighbour 1000 is faulty. By performing the same 

operations the message will be routed through an electronic 

move to node 0100 then via an optical move to node 0001 and 

finally to its destination 0000. 

Theorem 1: Let 
)(iA  and 

)( jA  be two non faulty (A,D)-

preferred neighbours of A. If all preferred neighbours of 

are faulty and at least one preferred neighbour of is non 

DAU ,

A
kS

DAU ,

)(iA

)(iA DA i

U ,)( )(iA

)(iA
)( jA

)( jA DA j

U ,)( )( jA

)( jA

)( jA
)(iA
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faulty then the Unsafety Vectors algorithm does not route 

messages of destination D via . 

Proof: Since 
DADA ji

uu ,
1

,
1

)()(

  then 
,DA,DA (j)(i)

UU  . 

Therefore, 
DA j

U ,)(

 is not the minimal such vector (for the 

preferred neighbors). 

 

V.Conclusion 

This paper has proposed a specified fault-tolerant routing 

for the OTIS-2D-Torus based on the concept of unsafety 

vectors. As a first step in this algorithm, each node A 

determines its view of the faulty set FA of nodes, which 

are either faulty or unreachable from A. This is achieved 

by performing at most 2n exchanges with the reachable 

neighbours. After determining FA, node A calculates m  

unsafety sets denoted 
AS1 , 

AS2 ,…, 
A

mS where m is an 

adjustable parameter between 1 and 2n+1. The m-level 

unsafety set represents the set of all nodes at distance m from 

A which are faulty or unreachable from A due to faulty links or 

nodes.  

Equipped with these unsafety sets each node calculates unsafety 

vectors and uses them to achieve fault-tolerant routing in the 

OTIS-2D-Torus. The larger the value of m is the better the 

routing decisions are, but at the expense of more communication 

overhead. An extension for this work is to implement the 

proposed routing algorithm for all the different network sizes 

and conduct a performance analysis through extensive 

simulation experiments to show the superiority of the proposed 

algorithm using the set of unsafety vectors. 
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