
120

On the Computation of the WCET for

LEON3 and MIPS Processors

Bruno Green, Guilherme Debom, Letícia Bolzani Poehls, Fabian Vargas, Celso Maciel da Costa

Abstract— In the last two decades, the worst-case execution

time (WCET) bound computation was a topic mainly related with

hard real-time systems for aerospace and defense applications.

Recently, however, it has become crucial in other domains

dealing with timing guarantees. This includes among others, the

automotive industry, where V2V and V2X applications for

autonomous vehicles are demanding not only fault-tolerant

responsiveness, but also the guarantee that timing deadlines will

not be violated. In this sense, it is a mandatory condition to have

an accurate determination of the WCET parameter in order to

guarantee the hard-real time response of these critical systems to

the environment. We propose in this paper a method to bound

WCET for workloads running in the LEON3 and MIPS

architectures. This approach performs a static timing analysis of

the application code and based on the IPET technique, bounds

the WCET. In addition to the use of the IPET technique, the

proposed approach also takes advantage of commercial, open-

source tools such as GraphViz and lp_solve to produce a WCET

upper bound.

Keywords— Worst-Case Execution Time (WCET), LEON3

Processor, MIPS Processor, Implicity Path Enumeration

Technique (IPET), Prediction of critical code execution time,

Static Timing Analysis.

I. Introduction

A real-time computer system is a computer system where
the correctness of the system behavior depends not only on the
logical results of the computations, but also on the physical
time when these results are produced. If a result has utility
even after the deadline has passed, the deadline is classified as
soft, otherwise it is firm. However, if severe consequences
could result if a firm deadline is missed, then the deadline is
called hard [2]. Fig. 1 depicts the basic notions concerning
timing analysis of systems.

A task typically shows a certain variation of execution
times depending on the input data or different behavior of the
environment. The longest response time is called the worst-
case execution time (WCET). In most cases, the state space is
too large to exhaustively explore all possible executions and
thereby determine the exact WCET. It is worth noting that
while in the last decades WCET bound was a topic mainly
related with hard real-time systems (such as aerospace and

Bruno Green, Letícia B. Poehls and Fabian Vargas are with the Catholic
University – PUCRS. Electrical Engineering Dept. Av. Ipiranga 6681,

90619-900, Porto Alegre, Brazil. vargas@computer.org

Guilherme Debom and Celso M. da Costa are with the Universidade Estadual
do Rio Grande do Sul (UERGS). R. Santa Maria 2300, 92500-000, Guaiba,

Brazil. celsocostars@gmail.com

Fig. 1. Basic notions concerning timing analysis of systems.

military), recently it has become crucial in other domains
dealing with timing guarantees. This includes among others,
the automotive industry, mobile communication and high-
performance computing. In this sense, it is a mandatory
condition to have an accurate determination of the WCET
parameter in order to guarantee the hard-real time response of
these critical systems to the environment [2].

In most parts of industry, the common method to estimate
execution time bound is to measure the end-to-end execution
time of the task for some set of inputs (test cases) on the target
hardware or on a clock cycle-accurate simulator. This
determines the maximal observed execution time. This will, in
general, underestimate the WCET and so is not safe for hard
real-time systems. This method is often called dynamic timing
analysis. In contrast to this method, there is the static timing
analysis, which is the preferred method used by academia.
This method does not rely on executing code on real hardware
or on a simulator. Rather, it takes the task code itself, most
often together with some annotations, constructs a control-
flow graph (CFG) of the workload and analyzes the set of all
possible paths through the CFG. Next, this technique
combines control-flow analysis with (abstract) models of the
processor architecture (e.g., pipeline, cache memory and bus-
access policy models) in order to obtain the WCET bound for
the workload.

A lot of research has been carried out within the area of
WCET analysis [2]. However, each task is, traditionally,
analyzed in isolation as if it was running on a monoprocessor
system. Consequently, it is assumed that memory accesses
over the bus take constant amount of time to process. For
multiprocessor systems with a shared communication
infrastructure, however, transfer times depend on the bus load
and are therefore no longer constant, causing the traditional
methods to produce incorrect results [2]. As response to this
specific need, several approaches dealing with WCET

International Journal of Advancements in Electronics & Electrical Engineering– IJAEEE 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 6 : Issue 2 [ISSN : 2319-7498] - Publication Date: 25 June , 2018

Measured WCET direct

on hardware platform or

simulated (maximal

observed WCET)

Actual WCET, including

all possible execution

times (must be found or

upper bounded)
WCET (upper

bounded, after

adding Security

Margins)

time 0
Security Margins

mailto:vargas@computer.org

121

prediction in multicore platforms have been proposed
[3,4,5,6].

In [3], authors proposed a technique to achieve
predictability of tasks running in multiprocessor systems. The
approach is based on the simultaneous analysis of the critical
task running in a given core with the shared-bus scheduling
process, in order to bound the WCET for that task. In order to
calculate the whole WCET of such task, the analysis needs to
be aware of the TDMA bus, taking into account that cores
must only be granted the bus during their assigned time slots.

In [4], authors proposed a unified WCET static timing
analysis approach for multicore processors. This work is based
on models of cache and shared bus, which interact with other
basic micro-architectural models (e.g. pipeline and branch
predictor unit). Each processor core is analyzed at a time by
taking care of the inter-core conflicts generated by all other
cores. In this multicore scenario, it is assumed a TDMA shared
bus based on round robin arbitration policy, where a fixed
length bus time slot is assigned to each core. They also assume
fully separated caches and buses for instruction and data.
Therefore, the data references do not interfere with the
instruction references. This work only models the effect of
instruction caches. Since it is considered only instruction
caches, the cache miss penalty (computed from cache
analysis) directly affects the instruction fetch (IF) stage of the
pipeline. Finally, authors consider the LRU cache replacement
policy.

In [5], authors proposed a method to bound WCET for
workloads running in a multicore architecture where each core
has a local L1 cache and all cores use a shared bus to access
the off-chip memory. They modeled the local cache behavior
of a program running on a dedicated core. Then, based on the
cache model, they constructed a Timed Automaton (TA) to
model when the programs access the shared bus. Examples for
TDMA and FCFS buses were analyzed.

In contrast to [3,4,5] that are approaches based on static
timing analysis, in [6] authors described a project called
―Merasa: Multicore Execution of Hard Real-Time
Applications Supporting Analyzability‖. This work aimed at
developing multicore processor design (described in SystemC)
for hard real-time embedded systems and a technique to
guarantee the analyzability and timing predictability of every
feature provided by the processor. Publications presented
results for a quad-core version of this processor, where each

core consists of two pipelines and implements the TriCore
(Infineon) instruction set. Each core provides up to four thread
slots (separate instruction windows and register sets per
thread), which allows simultaneous execution of one hard real-
time task and three non-hard real-time tasks. The processor
architecture contains one inter-core bus arbiter, which
arbitrates requests from different cores, and four intra-core bus
arbiters (one per core) that arbitrate among thread requests
from the same core. The processor shared memory can suffer
from both intra- and inter-core interferences. To avoid these
interferences, authors proposed a dynamically partitioned
memory, which assigns a private subset of memory banks to
each hard real-time task so that no other task has access to it
(the Merasa operating system sets the memory partition
assigned to each core by modifying special hardware

registers). Also, the MERASA processor runs based on a Round
Robin bus policy.

The MERASA system-level software represents an
abstraction layer between the application software and the
embedded hardware. It provides the basic functionalities of a
real-time operating system as a foundation for application
software running on the MERASA processor. MERASA system-
level software guarantees the isolation of memory accesses of
various hard real-time tasks that are running on different cores
to avoid mutual and possibly unpredictable interferences. This
isolation should also enable a tight WCET analysis of
application code. The resulting system software can execute
hard real-time tasks in parallel on different cores of the
MERASA multicore processor.

The MERASA processor and techniques were validated by
means of determining WCET for a given application based on
the use of two CAD tools, one academic and one from
industry: Otawa [7] and RapTime [8], respectively. While
OTAWA extracts the control flow graph (CFG) from the binary
code (thus, performing static timing analysis), RapiTime uses
the extracted traces to estimate the WCET by
measurements/simulations of the target hardware. Further, the
Merasa project was continued on a new action: parMerasa
[10,11].

These approaches [3,4,5,6] represent a considerable
improvement of the state-of-the-art, but note:

a) Concerning the approach presented in [6], up to this
moment, and from the best of our knowledge, it is
applicable only to the Merasa processor. So,
traditional processors used in embedded applications
such as PowerPC, ARM, MIPS and LEON3 as well
as well-stablished real-time operating systems for
critical applications such as VxWorks, LynxOS,
Integrity or RTEMS and their versions compliant
with ARINC-653 (an avionics standard for safe,
partitioned systems) [9] cannot take advantage of this
approach yet.

b) A few anchor Brazilian companies, among them,
Embraer, needs to have full access to the state-of-the-
art technologies developed in the field of static (and
dynamic) WCET analysis. However, this area of
research is very sensitive, presenting dual use in
aerospace industry, not only in commercial, but also
in the defense domain. This needs justify the
development of the current work.

In this work, the terms ―task‖ and ―workload‖ have the
same meaning and are used interchangeably. The remainder of
the paper is organized as follows: Section II describes the
proposed approaches based on the IPET technique to compute
the WCET for the LEON3 and MIPS processors. Section III
presents the preliminary results towards the validation of the
proposed approaches. Finally, Section IV draws the final
conclusions of the work.

II. Proposed Approach to Compute WCET

A) LEON3 Processor
The determination of the WCET for the LEON3 processor

is carried out by the following five steps (see Fig. 2):

International Journal of Advancements in Electronics & Electrical Engineering– IJAEEE 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 6 : Issue 2 [ISSN : 2319-7498] - Publication Date: 25 June , 2018

122

 (1) CFG Generation: The first step of the approach is

devoted to the reconstruction of the application code from the

executable- to the assembly-level. Then, the code is translated

into a control-flow graph (CFG) where the edges represent

basic blocks and the vertices, conditional (or unconditional)

branches from one basic block to another in the code. A basic

block is a minimal set of ordered instructions in which its

execution begins from the first instruction and terminates at

the last instruction. There is no branching instruction in a basic

block except possibly for the last one. A basic block

terminates at either an instruction branching to another basic

block or an instruction receiving transfer of control flow (CF)

from two or more places in the program.

Once the CFG is built-up, it serves as input for the next

analysis step (Timing Annotation) where the CFG is annotated

with information such as: ranges for the input values of the

program, loop bounds, shapes of nested loops, if iterations of

inner loops depend on iteration variables of outer loops,

frequencies of paths or branches taken, hardware anomalies

(time penalty due to erroneous branch prediction at the

execution stage of the pipeline) and if possible, unfeasible

paths. In the case of ―unfeasible paths‖, different paths

through the CFG are taken depending directly or indirectly on

input data. Some paths in the CFG will never be taken, for

instance, those that have contradictory consecutive conditions.

Eliminating such paths may increase the precision of timing

analysis.

Fig. 2. WCET computation flow.

(2) Program Execution on Target HW: Executes the

application in the target hardware with the provided input

vectors and gather timing information of each instruction

using measurement techniques. For the LEON3 processor, it is

used the Debug Support Unit (DSU) Instruction Trace (from

Xilinx) to collect the timing tag of every instruction executed

through the processor pipeline. The timing tag is the time (in

CPU clock cycles) required for an instruction to traverse the

processor pipeline from the ―Fetch‖ to the ―Exception‖ stage,

i.e., from the beginning of the 1
st
 to the end 6

th
 stage of the

pipeline.

In more detail, the DSU executes individual basic blocks or

code snippets by observing the real-system execution. Then, it

combines these measured individual times and their worst-

case effects observed locally. The input vectors are provided

randomly or are retrieved from application (if they exist). To

gather timing information of each basic block or code snippet,

the DSU traces instructions and stores the timing tag of every

executed instruction.

Fig. 3 depicts the execution of four instructions in the

LEON3 processor with the timing tag TTi of each instruction Ii

being collected at the end of the 6
th

 stage of the pipeline. The

Latency Li of an instruction Ii is defined as the difference of

the timing tag TTi of the current instruction Ii to the timing tag

TTi-1 of the previous instruction Ii-1. For instance, the Latency

of instruction I1 is L1 = TT1 – TT0, I2 is L2 = TT2 – TT1, and so

on.

Note that in this approach, the latency of the first instruction

to enter in the pipeline cannot be acquired (I0 in Fig. 3). If that

time is desired, five nop instructions must be prepended to the

code snippet being analyzed and the analysis must start at the

the first nop. Additionally, since the Latency of an instruction

is acquired at the end of the 6
th

 pipeline stage, the time of

commit of the last instruction in the pipeline is lost. If that

time is desired, a single nop instruction must be inserted at the

end of the code snippet being analyzed.

Fig. 3. Latency measurement for instructions passing through the LEON3

micro-pipeline architecture.

(3) Timing Compilation Procedure: Combines the timing

tags measured from the target hardware into an intermediate

structure named ―Timing Table‖. The Timing Table is

responsible for associating the address of an executed

instruction Ii with the three future addresses of instructions

(with respect to Ii) in order to determine the latency of

instruction Ii into the pipeline.
The Timing Table is generated from a list of a tuple of

instruction address and timing tag [(Ai; TTi)] (see Fig. 4a).
The latency L of each entry is calculated by the difference of
the current instruction timing tag and the former instruction
timing tag i.e., Li = TTi - TTi-1 (for instance, L3 = TT3 – TT2 in
Fig. 3). The intermediate table is then generated with the
addresses and computed latencies (Fig. 4b).

Fig. 4 shows an example trace of a task running on LEON3
processor measured with the DSU instruction trace of LEON3
mapped in a Xilinx FPGA. The resulting computed latency for
each instruction is depicted in the intermediary table of Fig.
4b. For example, instruction with address 40001284 takes 14
clock cycles (cc) to be executed. This latency was computed

computed

WCET

International Journal of Advancements in Electronics & Electrical Engineering– IJAEEE 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 6 : Issue 2 [ISSN : 2319-7498] - Publication Date: 25 June , 2018

123

from Li = TTi – TTi-1 = 2,439 – 2,425 = 14 cc. The final
Timing Table (Fig. 4c) is then generated from the computed
latencies and instruction addresses of each run.

 (a) (b)

 (c)

Fig. 4. Timing Table generation example: (a) Trace; (b) Intermediary
Execution; (c) Timing Table.

(4) Timing Annotation: Annotates on the CFG vertices
and edges the respective timing information stored in the
Timing Table. In more detail, it annotates on every basic block
(edge) of the CFG the number of clock cycles required for the
CPU to traverse such basic block. It also annotates on every
vertex of the CFG the cost (also given in clock cycles) for the
CPU to execute a branch from one basic block to another one
in the CFG.

It is worth noting that the LEON3 processor implements the

Static Branch Prediction Approach with the ―Always Taken‖

prediction. Then, the cost for a branch taken is 0 (zero) cc,

while the one for a mispredicted branch taken in the LEON3

micro-pipeline is n cc. Note that n is dependent on the type of

the instructions in the preceding stages of the pipeline (before

the ―Execution‖ stage, where the branch condition is verified).

As more complex are the instructions in the preceding pipeline

stages, more complex is the flush procedure to allow the

processor to continue from a mispredicted branch taken

decision.

(5) Bound Calculation: Computes the timing bounds for

all paths of the annotated CFG. The timing bounds are

computed by a modified version of the classic IPET approach

[14] so that to take into account the specificities of the LEON3

micropipeline. Hereafter, we briefly describe the IPET

technique.

The IPET Technique computes the timing bounds from the

annotated CFG by using two possible techniques: IPET

(Implicit-Path Enumeration Technique). In IPET, program

flow and basic-block execution time bounds are combined into

sets of arithmetic constraints. The idea was originally

proposed in Li and Malik (1995) [16] and slightly modified in

the current work, as described in the next paragraph.

For every edge (basic block) in the CFG is given a time

coefficient (tedge), expressing the upper bound of the

contribution of that entity to the total execution time every

time it is executed and a count variable (xedge), corresponding to

the number of times the entity is executed. See Fig. 5 for

details. A local upper bound is determined by maximizing the

sum of products (
∑

i∈edge ti ∗ xi).

Fig. 5. Example of IPET computation.

Additionally, for every vertex in the CFG is given a time

coefficient (tvertex), expressing the upper bound of the

contribution of that entity to the total execution time every

time it is executed and a count variable (xvertex), corresponding

to the number of times the entity is executed. Similarly, a local

upper bound is determined by maximizing the sum of products

(
∑

j∈vertex tj ∗ xj). Having noted this, the final result of an IPET

calculation is the upper execution time bound and a worst-case

count for each execution count variable for all entities:

max

(

∑
i∈edge ti ∗ xi) + (

∑
j∈vertex tj ∗ xj)

subject to a set of constraints. These constraints reflect the

structure of the task and possible flows such as unfeasible

CFG paths. It should be mentioned that the second coefficient

(
∑

j∈vertex tj ∗ xj) was added as an original contribution of this work

to the classic IPET formulation in order to satisfy the specific

control flow of the LEON3 micro-pipeline. This coefficient

represents the penalty cost from switching from one edge to

another one in the CFG. In more detail, we assume one of the

following values for tj:

- 0 (zero) cc, for a branch taken in an Always Taken

Approach;

- n cc, for the cost of a mispredicted branch taken in the

LEON3 micro-pipeline. Note that n is dependent on the

type of the instruction in the preceding stage of the pipeline

(just before the ―Execution‖ stage, where the branch

condition is verified). Depending on the type of the

executed branch, the instruction in the preceding stage of

the pipeline is executed and in this case, it can take any

number of clock cycles.

B) MIPS Processor

 The proposed approach performs the analysis in two steps

(Analysis and Computation) and requires a few user

interactions during the process. Fig. 6 depicts the computation

International Journal of Advancements in Electronics & Electrical Engineering– IJAEEE 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 6 : Issue 2 [ISSN : 2319-7498] - Publication Date: 25 June , 2018

124

flow. Throughout the whole computation process, information

is imported and exported among several files transparently to

the user. Moreover, two commercial tools are called by means

of the execution of specific scripts: GraphViz [12] and

lp_solve [13]. After the Analysis step, the user needs to edit a

text file (IPET.lp, Fig, 6) in order to proceed with the

Computation step. In more detail, such edition process consists

on defining the upper bound limits for all loops present in the

analyzed code.

Fig. 6. Execution flow for the proposed approach. At the end of this process,
the WCET for the MIPS processor is determined.

 The input information at the very beginning of the process is
the rebuilt Assembly code, which is simulated at the
commercial MIPS Spin simulator. In the sequence, the
Control-Flow Graph (CFG) is automatically generated by
GraphViz tool. Graphviz is an open-source code used for
graphical visualization. It is used to represent data structures
such as abstract graph diagrams. The CFG nodes (edges) are
formed by Basic Blocks and the vertex represent
conditional/unconditional branches from one Basic Block to
another one during the processor execution flow. A Basic
Block is defined as a chunk of instructions in the code that are
executed sequentially, with no branch instruction in between
this slice of code. Additionally, the CFG contains information
about the number of times a given Basic Block is visited along
with a code loop (i.e., the upper bound limits of the loop).
Based on the CFG and on the information provided by the
MIPS simulator (number of instructions executed by the
processor and the number of clock cycles per instruction), the
computation of the WCET is performed by the commercial
tool lp_solve. This tool is able to solve the system of equations
defined by IPET technique.

III. Conclusions

 In the last two decades, the worst-case execution time
(WCET) bound computation has become a prime area of
research for embedded real-time applications that are
demanding not only fault-tolerant responsiveness, but also the
guarantee that timing deadlines will not be violated. In this
sense, it is a mandatory condition to have an accurate
determination of the WCET parameter in order to guarantee
the hard-real time response of these critical systems to the
environment. We propose in this paper a method to automate
the bounding process of WCET for workloads running in the

LEON3 and MIPS architectures. This approach performs a
static timing analysis of the application code and based on the
IPET technique, bounds the WCET. In addition to the use of
the IPET technique, the proposed approach also takes
advantage of commercial, open-source tools such as GraphViz
and lp_solve to produce a WCET upper bound.
 Currently, we are working on the validation process of the
proposed approach by performing a series of practical
experiments where the WCET is being bounded for soft-cores
of the LEON3 and MIPS processors. These cores have been
mapped into Xilinx and Microsemi FPGAs and real-time
application codes are being developed.

Acknowledgment

This work has been supported in part by CNPq (National
Science Foundation, Brazil) under contract n. 306619/2015-6
(PQ).

References

[1] http://gaisler.com/index.php/products/processors/leon3 Last access:
June 2017.

[2] Reinhard Wilhelm et al., ―The Worst-Case Execution-Time Problem –
Overview of Methods and Survey of Tools‖, ACM Trans. On Embedded
Computing Systems, vol. 7, no. 3, April 2008.

[3] Jakob Rosén, Petru Eles, Zebo Peng, Alexandru Andrei
―PredictableWorst-Case Execution Time Analysis for Multiprocessor
Systems-on-Chip‖, 2011 6th IEEE International Symposium on
Electronic Design, Test and Application, pp 99-104.

[4] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, ―A
Unified WCET Analysis Framework for Multi-core Platforms‖, Proc. of
RTAS 2012.

[5] Mingsong Lv, Wang Yi, Nan Guan, Ge Yu, Timon Kelter, Peter
Marwedel, Heiko Falk, ―Combining Abstract Interpretation with Model
Checking for Timing Analysis of Multicore Software‖, ACM Trans. On
Embedded Computing Systems, vol. 13, no. 4s, March 2014.

[6] Theo Ungerer et al., ―Merasa: Multicore Execution of Real-Time
Applications Supporting Analyzability‖, IEEE Micro, Computer
Society, September-October, 2010, pp. 66-75.

[7] http://www.otawa.fr Last access: June 2017.

[8] http://www.rapitasystems.com/products/RapiTime Last access: June
2017.

[9] http://www.windriver.com/products/product-
overviews/PO_VxWorks653_Platform_0210.pdf Last access: June
2017.

[10] http://www.parmerasa.eu/index.php?menu=deliverables

[11] Theo Ungerer et al., ―parMERASA – Multi-Core Execution of
Parallelised Hard Real-Time Applications Supporting Analysability‖,
2013 16th Euromicro Conference on Digital System Design, pp. 363-270.

[12] GRAPHVIZ. Graphviz. Disponível em: <http://www.graphviz.org/>.
Last access: June, 2017.

[13] LP_SOLVE. Lp_solve reference guide. Disponível em:
<http://lpsolve.sourceforge.net/5.5/>. Last access: June, 2017.

[14] WILHELM, Reinhard et al. The worst-case execution-time problem—
overview of methods and survey of tools. Tecs, [s.l.], v. 7, n. 3, p.1-53, 1
abr. 2008. Association for Computing Machinery (ACM).
http://dx.doi.org/10.1145/1347375.1347389.

MIPS
Simulator

CFG
Generation

IPET
Analysis

Analysis Step

WCET
Computation

WCET
Bounded

Computation Step

GraphViz

lp_solve

IPET.lp

International Journal of Advancements in Electronics & Electrical Engineering– IJAEEE 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 6 : Issue 2 [ISSN : 2319-7498] - Publication Date: 25 June , 2018

javascript:abrirPrestacao('767392','1','306619/2015-6','PQ')
http://gaisler.com/index.php/products/processors/leon3
http://www.otawa.fr/
http://www.rapitasystems.com/products/RapiTime
http://www.windriver.com/products/product-overviews/PO_VxWorks653_Platform_0210.pdf
http://www.windriver.com/products/product-overviews/PO_VxWorks653_Platform_0210.pdf
http://www.parmerasa.eu/index.php?menu=deliverables

