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Abstract—For a large Quadratic Residue (QR) code C, the 

problem of finding the minimum weight d is NP-hard and many 

research techniques have been developed to attack its hardness 

such as simulated annealing, Multiple Impulse Method, Ant 

Colony Optimization, Zimmermann algorithms and MIM-FSI 

method. The true value of the minimum weight in QR codes is 

known for only lengths less than or equal to 223.  In this work, 

we propose new efficient schemes to catch lowest weights 

codewords in QR codes. The first proposed scheme 

Zimmermann-FSI uses the Zimmermann algorithm for 

searching lowest weights in the sub code SubEQR fixed by a 

self invertible element of the projective special linear group. 

The code SubEQR has a small dimension comparing to C itself. 

This reduction of the dimension permits to reduce considerably 

the research space size and it is behind the success of the 

Zimmermann-FSI scheme. This good result has encourages us 

to continue on reducing again the dimension of SubEQR and to 

propose the second scheme Zimmermann-FSI-RSC which uses 

the Zimmermann algorithm to catch lowest weights in a list of 

sub codes of small dimensions randomly extracted from the sub 

code SubEQR.  The two proposed schemes are validated on all 

QR codes of known minimum weight. The comparison between 

MIM-FSI, Zimmermann-FSI and Zimmermann-FSI-RSC on 

many large QR codes proves the efficiency of the two latest ones 

in terms of run time reduction and the results quality. The 

proposed methods performed very well in comparison to 

previously known results and they yield to some new ones for 

lengths up to 601.  

Keywords—Automorphism group, projective special linear 

group, Quadratic Residue codes, minimum distance, minimum 

weight, Multiple Impulse Method, Zimmermann’s algorithm, 

MIM-FSI method. 

I. Introduction 
The channel coding technique permits to detect and 

correct errors by adding redundancy in original data before 
transmission. In reception, the selected decoder uses the 
added information in correction. Each linear error correcting 
code C(n,k,d) can be generated by a binary generator matrix 
of k rows and n columns.  k is called the dimension and n is 
the length of C.  
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The weight of a word is the number of ones it contains. 
The error-correcting capability of a linear code is equal to its 
lowest non-zero weight.  

For each prime n of the form: 1 8n (mod )  , the 

Quadratic Residue code QR(n)=QR(n,(n+1)/2,d) of length n 

is generated by the polynomial ( ) ( )i

i Q

g x x 


  where Q is 

the collection of all nonzero quadratic residue integers 

modulo n : 2 1 1Q { j mod n : j n }   
 

and  is a 

primitive n
th

 root of unity in GF(2
m
), where m is the smallest 

positive integer such that n divides 2
m
 - 1. Each QR code can 

be extended to a EQR(n+1,(n+1)/2,d+1) code whose 
codewords are obtained by adjoining a parity-check bit to a 

fixed position  of every codeword of the QR(n) code. 

QR codes are a family of powerful error correcting 
codes, they have potential applications in modern 
communication systems and digital signal processing 
systems and they are recently decoded by fast and efficient 
methods [1-5]. They are used to construct quantum 
synchronizable codes [6]. In [7], authors have generalized 
QR codes over Galois rings using the Galois Theory. In [8], 
a self-dual code and a formally self-dual code are obtained 
from extended QR codes. 

In this paper our work will focused on finding the 
minimum distance of large Quadratic Residue codes which is 
a NP-complete problem as proved in [9]. 

The Pless identity [10] permits to write the following 
equality:  

  2j 2j 1for j  (n-1)/2  2j.A n 2j 1 .A:    
  

(2) 

With Ai denotes the number of codewords of weight i in 
QR(n) code and Ei denotes the number of codewords of 
weight i in EQR(n). 

The definition of EQR codes and (2) permit to write the 
following equality: 

2 2 2 1

1 1 1
for j  

2 1 2 2
j j j

n n n
: E A A

n j j


  
  

 
 

(3) 

The formula (2) proves that: 

      1d QR n d EQR n 
 

(4) 

PSL2 is a part of the automorphism group of Quadratic 
Residue codes. It is the set of permutations over {0,1,2,…,n-

1,}, of the form y ( ay b ) / cy d    where a, b, c and d 

are elements of GF(n) verifying : ad-bc=1. For all values of 
n, the binary EQR(n) code is invariant under PSL2 [11]. 

For a prime 1 8n (mod )  , the minimum distance d of a 

QR(n) code is related to its length by the following Krasikov 
inequality [12]: 

1 0.166315 n d     (5) 
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In [13], the likelihood weight enumerators of some 
quadratic residue codes are found.  

The remainder of this paper is organized as follows. The 

next section presents some background on Quadratic 

Residue codes, the projective special linear group PSL2 and 

the main related works. The section 3 presents the proposed 

schemes: Zimmermann-FSI and Zimmermann-FSI-RSC. The 

section 4 presents the main results. The conclusion and the 

possible future directions of this research are outlined in 

section 5. 

II. Related works 
The determination of the minimum weight d in a linear 

block code C(n,k,d) permits to know its capability in  
detecting and in correcting errors or erasures. When the 
dimension k increases, the  size  of  the  search  space 
becomes  prohibitively  large and  exhaustive  search  
becomes  not  feasible. In [14-21] authors have used many 
techniques to find the true value of the minimum distances of 
QR codes for all lengths less than or equal to 223. For more 
lengths, this metric is still unknown. This section summarizes 
the most important previous works. 

Wallis and Houghten [22] have applied many heuristic 
search techniques for BCH codes. They concluded that 
genetic algorithms with a large population size significantly 
outperformed hill-climbing, tabu search and hybrid 
techniques (GA – Hill climbing and GA - Tabu Search). In 
[23] the authors had improve some parameter of GA and get 
best result for BCH code compared to wallis and simulated 
Annealing [24] and applied this GA to QR codes of length 
up to 223. 

Instead the turbo decoder used in [25], the MIM method 
(Multiple Impulse Method) [23] uses the OSD decoder of 
order 3 and injects errors in many positions. This method has 
permits to find good results in terms of time and precision. 

Leon [26] has proposed an efficient probabilistic method 
based on information sets and the automorphism group and 
applied this method to QR codes of length up to 521. 

Aylaj and Belkasmi [27] have proposed a new simulated 
annealing by using new mechanism of moving the search in 
different regions of solution space by degeneration of 
energy. They obtained new lower bounds for some linear 
codes.  

Zimmerman algorithm [28] is a general algorithm for 
computing the minimum distance of a linear code. It is 
implemented in GAP (package Guava) [29] over fields F2 
and F3. It is also implemented, in Magma over any finite 
field. The method by Zimmerman is outlined in Algorithm 1. 
It is based on the so called information sets. Given a linear 
code C with parameters [n, k, d] and a generator matrix G, 
an information set S = {i1, . . . , ik} ⊂ {1, . . . , n} is a subset 
of k indices such that the corresponding columns of G are 
linearly independent. Therefore, after permutation of 
columns and elementary row operations we get a systematic 

matrix 1 k 1( | )Γ I A . Assume that we are able to find m−1 

disjoint information sets (S1 ∩ · · · ∩Sm−1 = ∅), then we get 

m−1 different matrices j k j( | )Γ I A . Notice that there still 

may be left n − k(m − 1) positions, so that the corresponding 
columns of G do not have rank k but km < k, then after 

applying column permutations and row operations, one 

gets m
k

m

AI
Γ

0 B

 
  
 

. In overall, the number of Γ  matrices is 

m: The first m − 1 will have full rank k, and the last one will 
have a rank strictly smaller than k. 

The idea is to consider an upper bound U, initialized to  
n −k+1, and a lower bound L, initialized to 1. Then, both 
bounds are updated after enumerating codewords, and it is 
checked whether L ≥ U; if so, the minimum weight is U. 

The codewords are enumerated as follows: consider all 

the linear combinations i · 
jΓ for j = 1, . . .  ,m, where  

i= (i1, . . . , ik) and wt(i) = 1. After computing any linear 
combination, if the new weight is smaller than U, then U is 
updated with the new weight. Moreover, after finishing with 

all linear combinations i·
jΓ  for j = 1, . . . ,m, the lower 

bound is increased in m− 1 units (actually one after each 
jΓ ) 

for the disjoint information sets. Now the same procedure is 

repeated for linear combinations i·
jΓ  for j = 1, . . . ,m and 

wt(i) = 2. Then, the same is done for wt(i) = 3, and so on 
until L ≥ U is obtained. 

Algorithm 1 (Minimum weight for a linear code C) 

Input: The generator matrix G of the linear code C with 

parameters [n, k, d]. 

Output: d The minimum weight of C. 

L := 1; 

U := n − k + 1; 

w := 1; 

while w ≤ k and L < U do 

for j = 1, . . . ,m do 

U := min{U, min{wt(i
jΓ ) : i ∈ Fk2 | wt(i) = w}} ; 

end for 

L := (m − 1)(w + 1) + max{0, w + 1 − k + km} ; 

w := w + 1; 

end while 

return U; 

 
 In [30], we have used an efficient scheme to compute 

the minimum distance for linear codes. This method is based 
on reduction of the code dimension and the use of the MIM 
method on a given sub code fixed by a self invertible 

permutation  of the projective special linear group of 
Extended Quadratic Residue codes. The dimension of this 
sub code is very low comparing to the dimension of C itself 
.In the next section we will apply the Zimmermann algorithm 
on this sub code. 

III. The proposed schemes 
This section presents the Zimmermann-FSI method for 

finding the lowest weight in large QR codes. The first 
proposed scheme Zimmermann-FSI works as follows: 

Inputs: - n a prime : 1 8n (mod )   

             - A generator matrix G of EQR(n+1) 

Step 1: find an element PSL2(n):  
2
=1 (self invertible) 

Step 2: find the sub code:  

SubEQR(n+1,)={c EQR(n): (c)=c} fixed by  by 
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solving the following system (S) of two fundamental 

equations: 

( c ) c
( S )

c ( Inf ,Red ) Inf * G

 
 

 
 

Step 3: find the estimated minimum distance d of 

SubEQR(n+1,) by using the Zimmermann method. 

Output: d-1 as estimated minimum distance of QR(n) 

 
The second proposed scheme Zimmermann-FSI-RSC (on 

Random Sub codes) works as follows: 

Inputs: - n a prime : 1 8n (mod )   

             - A generator matrix G of EQR(n+1) 

             - N, the umber of random sub codes 

Step 1: find an element PSL2(n):  
2
=1 (self invertible) 

Step 2: find the sub code SC:  

SC={c EQR(n): (c)=c} fixed by  by solving the 

following system (S) of two fundamental equations: 

( c ) c
( S )

c ( Inf ,Red ) Inf * G

 
 

 
 

Step 3:  

          d←n      

 For i=1 to N do 

                 - Randomly extract a sub code SSC of SC 

                 - find the minimum distance d’ of  SSC by  

                    using the Zimmermann method. 

                 - if (d’<d) then  

                                            d←d’ 

                   end If 

           End For 

Output: d-1 as estimated minimum distance of QR(n) 

IV. Results and Discussions 
This section presents a validation of the proposed method 

on all binary quadratic residue codes of known minimum 
distance and its application for finding the minimum distance 
of some unknown minimum distance.  

In the comparison of Zimmermann-FSI with other 
method, we define the weight gain WG as the difference 
between the lowest weight obtained by the Zimmermann-FSI 
scheme and that obtained by other method: 
WG=d(Zimmermann-FSI)-d(Other). 

All results have been done using a simple configuration 
machine: Intel(R) Core(TM) i3-4005U CPU @1.70GHz. 

A. Validation of Zimmermann-FSI 

Method: 
In order to validate the proposed method, it is applied on 

all QR codes of known minimum distance presented in [14-
21]. The TABLE I summarizes the obtained results, it shows 
that the minimum weight found by the Zimmermann-FSI 
method is equal to the true value of the minimum distance of 
all QR codes of known minimum distance. Then the 
Zimmermann-FSI method is validated for length less than or 
equal to 223. This table shows that the proposed scheme 

gives the lowest weight codeword in a very short time. 

B. Comparison between Ant Colony 
Optimization (ACO) and 
Zimmermann-FSI: 
The TABLE II compares Ant Colony Optimization 

(ACO) Method [21] with Zimmermann-FSI .This table 
shows that Zimmermann-FSI outperforms very well the ACO 
method in finding the true value of the minimum distance for 
Quadratic Residue codes of length up to 199. 

C. Comparison between Aylaj’s SA 
and Zimmermann-FSI: 
The TABLE III compares Aylaj’s SA algorithm [27] with 

Zimmermann-FSI .This table shows that Zimmermann- FSI 
outperforms very well the Aylaj’s SA in finding lowest 
weight codewords in Quadratic Residue codes. 

D. Comparison between MIM and 
Zimmermann-FSI: 
The TABLE IV compares MIM Method [23] with 

Zimmermann-FSI .This table shows that Zimmermann- FSI 
outperforms MIM in finding lowest weight codewords for 
Quadratic Residue codes. 

E. Comparison between 
Zimmermann-FSI scheme and 
Zimmermann method: 
In order to compare the Zimmermann-FSI scheme with 

the Zimmermann method [28-29], their applications on some 
QR codes are made. The TABLE V gives the obtained 
results. It shows that the Zimmermann-FSI scheme greatly 
outperforms the Zimmermann method on finding lowest 
weight codewords. The run time of the two methods is 24 
hours in the same configuration machine given above.  

F. Comparison between MIM-FSI and 
Zimmermann-FSI: 
The TABLE VI compares and summarizes the total run 

time and the result quality of the two methods MIM-FSI and 
Zimmermann-FSI. This table shows that Zimmermann-FSI 
outperforms MIM-FSI in both total run time and in the 
results quality. 

G. Comparison between 
Zimmermann-FSI and 
Zimmermann-FSI-RSC methods: 
The TABLE VII compares and summarizes the minimum 

distance found by the two methods Zimmermann-FSI and 
Zimmermann-FSI-RSC. This TABLE shows that 
Zimmermann-FSI-RSC outperforms Zimmermann-FSI 
especially for large codes.
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TABLE I.  Validation of Zimmermann-FSI method 

QR Codes True value  

of the  

minimum  

distance 

d(Zimmermann- 

FSI) 

d(Zimmermann- 

FSI-RSC)  

n 

 

k 

17 9 5 5 5 

41 21 9 9 9 

73 37 13 13 13 

89 45 17 17 17 

97 49 15 15 15 

113 57 15 15 15 

137 69 21 21 21 

193 97 27 27 27 

31 16 7 7 7 

47 24 11 11 11 

71 36 11 11 11 

79 40 15 15 15 

103 52 19 19 19 

127 64 19 19 19 

151 76 19 19 19 

167 84 23 23 23 

191 96 27 27 27 

199 100 31 31 31 

223 112 31 31 31 

TABLE II.  Comparison between Zimmermann -FSI and 
ant colony optimization (ACO) algorithm of Bland 

Codes QR True value of 

the minimum 

distance 

d(Zimme

rmann-

FSI) 

d(AC

O) 

weight 

gain WG n k 

113 57 15 15 16 1 

137 69 21 21 21 0 

193 97 27 27 38 11 

151 76 19 19 19 0 

191 96 27 27 35 8 

199 100 31 31 40 9 

TABLE III.  Comparison between Zimmermann-FSI and 
Aylaj's SA algorithm 

Codes QR d(SA) d(Zimmermann-

FSI) 

weight 

gain WG n k 

 383   192  63 47 16 

 431   216  75 47 28 

 463 232 79 59 20 

 479 240 83 55 28 

 409  205 68 47 21 

 433  217 76 37 39 

 449  225 76 55 21 

439 220 72 47 25 

TABLE IV.  Comparison between ZIMMERMANN-FSI 
and MIM methods 

Codes QR d(Zimmermann-FSI) d(MIM) weight 

gain WG n k 

 313   157  39 39 0 

 337   169  39 39 0 

 353  177 41 41 0 

 401  201 41 61 20 

 409  205 47 63 16 

 433  217 37 67 30 

 449  225 55 67 12 

 311   156  35 35 0 

 359   180  39 55 16 

 367   184  47 59 12 

 383   192  47 59 12 

 431   216  47 67 20 

 439   220  47 67 20 

TABLE V.  Comparison between Zimmermann-FSI and 
Zimmermann methods 

Codes QR d(Zim

merma

nn -

FSI) 

d(Zimmer

mann) 

Total 

Run Time 

of 

Zimmerm

ann -FSI 

Run 

Time of 

Zimmer

mann 

WG 

 

n 

 

k 

 439   220  47 67 332 2853 20 

 569   285 59 91 54268 12422 32 

 631 316 75 103 19944 48447 28 

TABLE VI.  Comparison between Zimmermann-FSI and 
MIM-FSI methods 

QR Codes d(Zimmerma

nn-FSI) 

d(MIM

-FSI) 

Total 

Run 

Time of 

MIM-

FSI 

Total Run 

Time of 

Zimmermann 

–FSI 

 

n 

 

k 

 439   220  47 47 438 332 

 487 244 55 55 86672 553 

 503 252 55 55 42084 9084 

 521 261 53 53 226045 709 

569 285 59 75 88518 54268 

 607 304 83 83 129550 1384 

631 316 75 87 732833 19944 

 

TABLE VII.  Comparison between Zimmermann-FSI and 
Zimmermann-FSI-RSC methods 

QR Codes d(Zimmermann-FSI) d(Zimmermann- 

-FSI-RSC) n k 

463 232 55 55 

487 244 55 55 

503 252 55 55 

521 261 53 53 

569 290 59 59 

601 301 79 77 

V. Conclusion and perspectives 
In this paper we have proposed new efficient schemes to 

find the minimum weight in large Quadratic Residue codes. 
These schemes permits to catch codewords of very smallest 
weight comparing to other known powerful methods. In the 
perspectives we have to adapt and use these methods to find 
the minimum weight in other linear codes like BCH codes, 
Low Density Parity Check codes (LDPC) and convolutional 
codes. 
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