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Lossless Transmission Lines with Time-Varying
Specific Parameters

Vasil G. Angelov

Abstract — The present paper is devoted to the investigation
of lossless transmission lines with time-varying specific
parameters terminated by nonlinear conductive loads with
interval of negative conductance. We give a general method for
reducing the mixed problem for the arising hyperbolic system to
an initial value problem for neutral system on the boundary.
Here we overcome difficulties arising from time-varying specific
parameters and formulate conditions for the existence of
oscillatory solutions.

Keywords — transmission lines with time-varying specific
parameters, oscillatory solutions, nonlinear boundary value
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1. Introduction

The main goal of the present paper is to consider lossless
transmission lines with time-varying specific parameters. They
are terminated by a nonlinear conductive load with intervals of
negative differential conductance (cf. for instance[1]-[3]).

Consider a lossless transmission line, shown on Fig. 1,
terminated by a nonlinear load with V-l characteristic

m
i=f(u) :Zgnu”, and parallel connected (parasitic) capacitance
n=1

C, , where E(t) is the source function and R, — the
resistance of the source, C(x,t) — per-unit length capacitance,
L(x,t) — per-unit inductance, A — the length of the line.

The lossless transmission line is described by the system

ikt dlcextuxt)] auxt) — [L(xt)i(x.1)] o
x ot X ot '
Under the assumptions (LC):

—i(x,1)
Ro u(x,1) i=f (u)
"1
| | X

[ [
0 A

Figure 1. Lossless transmission line with time-varying specific parameters
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0<Cy(l—K) <C(X,t) <Cy(L+k) ;
0< Ly@—K) < L(xt) < Ly(L+k) ;

Gt <Coi [Lx )<Ly

where C,>0, L, >0, 0<k<1,C,>0, L, >0 are constants,

we formulate a mixed problem for system (1): to find the
unknown voltage u(x,t) and current i(x,t) satisfying the

system
ou(x,t)
ot

ai(x,t)+ 1 6u(x,t)+ 1 aL(X’t)i(xt)—O
ot L(xt) ox  L(xt) ot e

1
C(x,1)

oi(x,1)
OX

1
C(x,t)

oC(x,t)
ot

u(x,t)=0

for (x,t)ell= {(x,t)e R? :(x,t)e[O,A]x[O,oo)} with boundary
conditions
E(t)—u(0,t) = Ryi(0,t), t>0
du(A.t)
dt

)

= i(A,t)—ignu”(A,t), t>0
n=1

G

and initial conditions
u(x,0) =uy(x),i(x,0) =iy (x) xe[0,A],

where uy(x), ip(x) are prescribed initial functions.

n. Transformation of the
Hyperbolic System in Diagonal

Form
The system (1) can be rewritten in the matrix form

Uy 0 1Clu | |C/C 0 |lu| |O
. + . + R = .
i /L 0 || i, 0 L/L|i 0
. . u 1/C C./C 0
Via denotations U=| || A= A=
i L /L

0 0
©)

0
1/L
we have

U, +AU, +AU =0.

0

To transform A=
1/L

1/0C} in diagonal form we solve
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1/C
/L -

the equation

‘ =0 whose roots are

M (%) =1/ LT ), Ay (xt) =—1/ /L, HC(X.1) .
Eigen-vectors are
9 29)- (D) 9.8)- (.0,
Denote by H the matrix formed by eigen-vectors
| D
e JLixy

U2Jexn) ~12fcxn) ond then
ULixn)  ulyixy)

]. Its inverse one is

Hl(x,t){

HAH L = [l/ L(x,t)C(x,t) 0

0 _1/ L(x,t)C(x,t)]

V(x,t)

Introduce new variables Z :{ (X1 } where Z = HU and
Xy

U=H"Z, wehave

V(x,t) =/C(x,t)u(x,t) +,/L(x,1)i(x,1)
1(x,t) == C(x,t) u(x,t) +/ L(x,t)i(x,1)

L vt i(xt)

ToJcxn T 2 e
_ 1 1
R N KR AR N e

Substituting U = H*Z in (3) we obtain

or

u(x,t)

1(x,t1).

6(H(;Z) + Al(H *1z)= 0

and multiplying from the left by H we get
(HAH *1)% + (H

We reach the system
vxy), 1 aV(x,t)+1(a|n|_c

A a(Ha)‘(lz) .

-1 -1
% + —aH + HA oH
ot ot OoX

+ HA1H1]Z =0.

1 8InLC]V(X,t)+

a Jic o 4 & Jic o
+%(aln(aLt/C)_\/E_cmn(aim)}(x‘t):o' )
+%(6lgtLC+\/E_calngC]|(X‘t):O'
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Recall the denotation v(x,t)=1/,/L(x,t)C(x,t) — the

speed of propagation. The system

dé _ 1

e = E()=
dr  JLEDCE) 0
dn_ 1

1 m=x
& JLmocmo |

for each (x,t) eI has a unique solution. Then
T (t) = A/VEQR), 1) = AYLED), HTE®D. ),

T, (®) = A/v(n(t),t) = A{/L(n(t), )YC(n(t). 1)
with derivatives

. 2A [8(LCc) 1 a(Lc)
Tg(t)—4\/ﬁ{ o +\/E x ]
c v 2A [8(Lc) 1 4(Lc)

T,I(t)—4m{ & T o }

. Reducing the Mixed Problem
to an Initial Value Problem on the
Boundary

For particular case L=L(t),C=C(t) we obtain
algLC =0 and M =0. Consequently
X

T (t) = A/V(t) = AJLEOCH) =T, )=T(),
Tt = ALOCH) + LOCH yLHew ).
We make assumptions (GC):
d?In(L(t)C(t))
dt?

dIn(L(t)/C(t))

= 0,
dt

=0.

1dIn(L@)C() )= 1d In(L(t)/C(t)).

4 dt 4 dt
Therefore &(t) =0 (o =const), y(t) =0=L(t)/C(t) = const
and then (4) can be simplified in the form

Denote by o(t) =

oV (x,1) N 1 ov(xt)

ot Jic o +oV(x,t)=0 o
ol (x,t) 1 ol(xt) B
p _\/E P +ol(x,1t)=0.

Let us set V(x,t)=e "W(x,t), I(x,t)=eJ(x,t) and
substitute in (5). We get
aW(x,t)Jr 1 aW(x,t)_0 aAxt 1 axt)

ot JLC X Lot JLC  OX

To obtain new boundary conditions with respect to the new
variables we substitute

=0. (6)
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—ot

( t)_ m ( ) m‘]( t)

—ot

—ct

—ot

. e e
i(x,t)= Z—MW(x,th

into (2) and obtain;

_ 1
E(t) - e "W(0,) + ——
\/C( ) 2,/C(t)
_ RO —ot

T W (0,t) + 2\;:_‘)(_0 e °'J(0,t), t>0,

d (e WA, t)-e " IAL) |
dt B

2yC(t)
—(St —(st _ —ot n
LETIAY J(A,1) Z:gn W (A, t)—e " J(A,1) t20.
2Lty oo JC(®)
For the new initial conditions we proceed from
W (x,t) =e°'VC u(x,t) +e VL i(xt),

J(x,t) =—eVCu(x,t) + e VL i(x 1) .
Then

W (x,0) =,/C(0) u(x,0)++/L(0) i(x,0) =
=JC(0) U (¥) ++/L(0) g (x) =W (X)
J(x,0) = —/C(0) u(x,0)+4/L(0) i(x,0) =
=—J/C(0) ug(x) +/L(0) ig(x) = o (¥).

So on the base of results from [4] and [5] we formulate the
following mixed problem: to solve (6) in x [0, A];t €[0,x)
with initial and boundary conditions
W(x,0) =W, (x), J(x,0) = Jo(x), x<[0,A].

W (0,t) + J(0,1) “R W (0,t) + J(0,1)

J(x,t)

e °'J(0,t) =

—ot
e WAL

e 2,JL(t)

2E(t)e°" - t>0
© Je) JLo
df e ~ _ctW(At)+J(At)
t M(W(A,t) J(A,t))J C1 \/W
(o WAD-IAY
,1>0.
z2“ 1q( Jew J '

After obvious transformations the boundary conditions
become

Wy 2 EOLO E(t)M

70 ~3(0,t), t20,

cn . Jew
() Cl‘/_]W(At)+

J(ALY) =W(A,t)—[

ﬂ C(t) (At 1 m g,e "t (ALt - J(AL))
+[G 20 Cl\/_] gee ew)

Repeating reasoning from [4] and [5] we integrate along
the characteristics and obtain
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W(O,t) =W(A,t-T(t)),JOt-T(t) =J(AL).
Assuming that W (A,t) =W (t), J(0,t) = J(t) are unknown
functions we obtain the system
C(t) VC()

2C(t) Cn/m ®-

W(t)=J(t- T(t))+[o

[r L0 _ O JE-T() -

12 ge ) - 2t TO) _
G (2 C(t))

I = 2e"EWMYLO ~T(@), t=0

——W t
Ry ++/L(t)/C(t) (
with delay T(t). In order to formulate a correct problem we

should prescribe initial functions on the interval [-T(0),0].

This can be made by transition of the first initial functions
along characteristics of the hyperbolic system (cf. [5]). The
obtained functions we denote by Wy (t) and Jy(t) .

Iv. Existence-Uniqueness of an

Oscillatory Continuous Solution

Now we are able to formulate the main problem: to find a
solution of (7) with advanced prescribed zeroes on an
interval [0,00), where W,(t) and J,(t) are prescribed

oscillating functions on the interval [-T (0),0] .

Let Sy ={t,y,ne N be the set of zeroes of the initial
function, that is, Wy(t)=0, Jo(t;)=0 such that
7, =-T(0), t,=0.Besides

max{t ,; — 1, :1 =0.,...n} <sup{T (t) :t €[0,00) } =T, < 0.

Let S={t}2, be a strictly increasing sequence of real
numbers satisfying the following conditions (C):

(C1) mgtl =o0; (C2) for every | there is s<I such that

-T()=t, where t, € S; US.

It follows
0<A=inft; -t :1=012,...}<supft;,, -1 :1=012..}=Ty <o

Introduce the sets
My = {W(.) €C[0,00):W(t) =0 and W ()] <Woe" ™, te[, ,t,zl]}
M, = {J(.) €C[0,00):3(t) =0 and [3() < Je" ™), telt ,t,zl]}
(1=012,...), where Wy, Jo, 1 are positive constants, and the
following families of pseudo-metrics

o0 W W) = max{e O () -W (O]t < 4,01,
p0(3,3) = max(e V30~ IOt [t 4.1}
The set My, x M turns out into a complete uniform space

(cf.[5])with respect to the saturated family of pseudo-metrics
(')((\N J), (W, J)) (1=012,..). Using (7)..we define the
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operator B = (B, (W,J), By W,J)):

by the formulas

By (W, J)(t):= j Ry W, J)(s)ds —
2e°tE(t)M

MWXMJ _)MWXMJ

f41

[ R W, 3)(s)ds,

f]

_tl

B, (W,J)(t) = Rot L(t)/C(t) W(t-T()),
telt,t.,]0=0L2..).

We call a solution of (6) the solution of the operator

equation (W,J) = (B, (W,J),B; (W, J)).

After some preliminary assertions we reach the main
result.

Theorem 1. Let the following conditions be fulfilled:

1) The initial functions Wy (.),J,(.) € C*[-T(0),0] satisfy
W () SWoeu(t_”)’|~]o(t)| <" t e[, 1,0
2) E(t) =0;e™|E(t) <Woe' ™ tefty, t, 1 Wo = J);
3) Assumptions (LC) and (GC) are valid and
200 LG,

4) The following inequalities are satisfied

e‘“Aqo+e“To W, + Je ™ o]+ Co 1 |Colirk)
1-T, 2C,(1-x) G\ Ll-k)
n-1
Z| | Wy+Je ™| e(™DHTo 1 <3
2,/Co(1—k) n mo

2Eq+/Lo(1+K)

Ry ++/Lo(L—K)/Co(L+k)

—uA .
+Wee ™" < ;s

Ky = e’llé . o4 (e’uA +1) |G|+ Co +i Col+k) N
1-T, i 2C,(1-k) ¢, \/ Lo(L—k)
+i|gn|(e(nl)ﬂ0 +"'+1) Wy + Jge ™ h <1
= G 2/CoL-k) |
Vo riGak)-Rl

J =

VL-K)/(Co@+K)) +Ry
Then there exists a unique oscillatory solution of (6),
belonging to My, xMj .

v. Numerical Example
Consider a transmission line with specific parameters
L(t) = Ly(1+kcosO(t)) , C(t) = Co(1+koosb(t)). Our purpose
here is to find the explicit form of 6(t) in order obtain a

“noise-free signal”.
We check assumption (GC).

63

LoLm -L2t) _ CHCH-C*()

Assuming 0 20 =0 we get
d?In(LCc() _ d [ L(t) . C(t)J _
dt? dtl L(t) C(t)
_LoLm-Co , Coco-c*o _
L*(t) C2()

For 6(t) we have
CHCt)-C3t)=0=
ColL+ k cos 0(t))Co [~ ksin(t)ii(t) —k cos O(t)62 (1))
—C2(-ksino(n)d(t)f =o.

k+coso

do ' sin0(L+k cosd)

We put 0=p(® 0= and —=K,e
p p6)= dep i Ko
0 2
As usually we put tanE=53 ezzarctans:>d9=1 - ds .
+5
Then
k) (0/2)+1k
ﬁ: Koeln tan(6/2) _ Ko(l—k)tanz(9/2)+l+k ®)
dt tan(6/2)

In view of 6, =0(0); 6, =0(0) for t=0 we have

) (1_k)tan2(90/2)+1+k éotan(GO/Z)
By =Ko 0= ; .
tano/2) (1—K)tan?(6,/2)+1+k
It follows
J tag(elz) d =Kot +Ky;
(1-k)tan?(0/2)+1+k
_ij‘——kSIHG do=Kyt+K; =
2k ° 1+kcosO
In(L-+ k 005 6) = ~2KK ot — 2K, = KFM;(OSGO) ;
—2k(Kot+Kq) 1 “2k(Kot+Ky) i
cos O(t) = ; O(t) = arccos ”
—2k(K0’[+K1) _1
which is valid for —-1< ” <1.

The functions |L(t)| < Lok[d(t)| < Lok = Ly and
|C(t)| < Cok|6(t)| < Cokd = C, are bounded provided 6(t) is
bounded. In view of the right-hand side of (8) 6(t) is
unbounded for O(t)—>~ and 6(t)—>0 that

(efZK(KoHKl)_l)/k -1 and (e*Zk(Ko”Kl)—l)/k —1. Thus we
suppose

is,

—2k(Kot+Kq) 1

¢ <1-¢5 for sufficiently small

—1+06<cosb(t) =

8>0. Since

(1-k)tan®(0/2)+1+k
tan g(6/2) -

6=K,
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1-cos6 +(1+ k)

1+cos0O 1-cos6

= K{(l—k)

we have to substitute in the last right-hand side cos6(t) by
-1+38 and 1-38, and obtain:
5 }

0, - K{(l—k)\/%? N
6, =K [(1 k)\/g+(1+k) %}
1+k(1-5)

V2-5Vs

In other words if we want to obtain “noise-free” signal we

have to choose 6(t) = arccos (e‘z"(Ko”Kl) —1)/ k and then

1+cose}

0= max{él; éz} 2Ko| —F=

kb tan(6y/2)
(1-K)tan?(0/2)+1+k |

Obviously the sign of o defines the behavior of the
solution amplification or attenuation. The V-I characteristic of
the nonlinear element

f(u) =g, u+g; u® +gou® =0,001u —0,5u? + (1/3)u®
has an interval of negative differential conductance.
Let us take Wy~ J, ~E,~107: k=001, A =1m; p=5.10%
8=0,01; L, =0,2uH/m; Cy =5pF/m; Ry =35Q; C,=8.10"'F.
Then
JLCo =107 |[Ly/Cy =4/0,04.10° =200 ©;
(0,99) x107° < T (t) = A/L()C(t) < (1,01)x10°;
pA =4,95=e" =e*9 =1 41x10%;
uT, =5,05; e"™0 =% —156.10%;
1,4.107°)0, tan(6, / 2)

<1 for sufficiently small 6.
0,99tan?(8,/2)+1,01

0=

The inequalities from Theorem 1 become

0,9.1073

Y AR
35+198

1,4.107°)0, tan (0, / 2)

71073/ 1— ;
0,99tan?(0, /2)+1,01

26 10| tan(, /2]
" 099t 2(0,/2)+1,01

_[198-39 o495
198+ 35

+0,1975+0,39+0,03443+5,265.10° <1;

w = =0,00504 <1,

1,4.107%, tan (0, / 2)
N

K;=7.103%/|1-
’ 0,99tan?(0,/2)+1,01

2,6.10°|0, tan(0, / 2)
0,99tan?(0,/2)+1,01
We can choose an initial approximation

+0,197+0,39+0,138+4,7.107° <1.

WO (1) =W, sind(t), IO (t) = J, coso(t) .
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