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Abstract- Accurate prediction of Remaining Useful Life (RUL) of 

machines and machine components is very important for reliability 

evaluation. This paper proposes an Artificial Neural Network (ANN) 

as a method for accurate prediction of RUL of bearings based on 

vibration measurements during an accelerated life test. The input 

features to the neuro-predictor  are: the vibration signal in the time 

domain, the dominant harmonics of the bearing vibration signal 

expressed in a set of selected coefficients of the discrete cosine 

transforms (DCT), and the main harmonics of the vibration signal as 

expressed by Fast Fourier Transform (FFT).The Euclidean distance 

which is a measure of time to failure based on RMS value is used as 

the figure of merit for the validation of the ANN. Henceforth; the 

RUL of the bearing can be predicted as the output of the neuro-

predictor. The results prove that the suggested methodology can 

successfully be applied for prediction of bearing RUL. 
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I. Introduction 
Failures occurring during production processes result in 

negative implications. To overcome these implications; 

several methods to detect machinery faults have evolved to 

safety.  Analysis of reliability data plays an important role in 

the maintenance decision making process [1]. Existing 

methods for predicting machine element failures can be 

grouped into two main categories: traditional and prognostics 

reliability estimation approaches [2]. 

 

Traditional approaches are based on the distribution of event 

records of a population of identical units.  Many parametric 

failure models, such as Poisson, Exponential, Weibull and 

Log-Normal distributions have been used to model machine 

reliability [3]. The most popular among them is the Weibull 

distribution due to its versatility and ability to accommodate 

various types of behavior including infant mortality, regular 

performance and wear out phases [3]. On the other hand, 

prognostic approaches aim to predict how much time is left 

before a failure occurs given the current machine condition 

and past operation record. While diagnosis involves 

identifying and quantifying the damage that has already 

occurred, prognosis is concerned with predicting the damage 

that is yet to occur [4, 5].  In fact, prognosis relies on diagnosis 

outputs [6]. 

 

The existing prognosis - or RUL prediction methods - can be 

classified into physical based prognosis models and data 

driven prognosis model [7]. Data driven prognosis models do 

not require assumptions of physical parameters or 

performance models thus, it is easy to apply.  However, these 

techniques need a large amount of data to be as close to the 

real application as possible. Artificial Neural Networks (ANN) 

are well known as data driven techniques where historical data 

are used to train the neuron predictor to estimate a system 

performance parameter based on known input data which 

produce specific values of that performance parameter.  The 

trained ANN will then be used to predict unknown 

performance parameters based on a given set of input data.  

Normally, ANNs consist of an input layer, one or several 

hidden layers and an output layer [8].  

 

In this study a method is proposed to evaluate the RUL of 

deep groove ball bearings based on recorded vibration signals 

at different time intervals during an accelerated life test. In the 

proposed method, recorded vibration signals were used in 

three different ways as illustrated below in section 3. The 

extracted features were used as input parameters to an ANN to 

predict bearing RUL. The proposed algorithm differs 

depending on the domain features and hence, training speed 

also differs. The performance of these different neural 

networks has been compared. 

 

This paper is organized as follows. In section 2, the 

experimental setup is introduced. Then in section 3, applied 

methodology is developed.  Section 4 presents results and 

discussion. The conclusions of this comparative study are 

summarized in sections 5. 

II. Experimental work 
An experimental setup, Fig. 1, has been designed and built to 

carry out an accelerated life test of deep groove ball bearings. 

Two ball bearings were used to support a 25mm diameter steel 

shaft. The shaft was driven by a variable speed induction 

motor (380V/50Hz/1.5HP/2-poles/3500rpm) via a flexible 

coupling. The free end of the shaft was loaded through a lever 

arm pivoted on another ball bearing. The arm was used to 

magnify the load transmitted to the free end of the shaft and 

the load was applied on the free end of the arm. Fig. 2 shows a 

schematic diagram of the test rig. Five vibration signals were 

recorded for the three deep groove ball bearings. Vibration 

signals were recorded in the vertical and horizontal directions 

for each of the two bearings R and F. For bearing P, only 
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vibration signal in the vertical direction was recorded. The 

deep groove ball bearings were manufactured by FSB [9]. All 

vibration data readings were recorded at appropriate intervals 

of time using B & K accelerometers (Type 4381) having a 

voltage sensitivity equal to 8 mV/ms
-2

 and a frequency range 

up to 4800 HZ. Data collection was performed using a Brϋel 

and Kjaer 4 Channel Pulse Analyzer (Type 2825) and Pulse 

Lap shop software (Version 6.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Image of the experimental setup 

 

 

 

 

 

 

Figure 2-a.  A schematic diagram of the test rig 

 

 

 

 

 

Figure 2-b.  A schematic diagram of the modal test 

To better understand and interpret the recorded results, an 

experimental modal test was performed to obtain the dynamic 

modal characteristics of the system at points R, F, and P. The 

test was performed by applying an excitation, using B&K 

impact hammer (Type 8202) fitted with a B&K force 

transducer (Type 8200) having an output sensitivity of 1.01 

pc/N, Fig. 2-b, at the location of the applied force, point (U) 

and in the vertical direction to simulate the actual force. The 

response was recorded in both vertical and horizontal 

directions at front and rear bearings, points F and R 

respectively. For arm bearing at point P, the response was 

measured in the vertical direction only.  

 

III. Methodology  
Fig. 3 shows a block diagram of the methodology followed in 

the present work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 

Figure 3.  Block diagram for the bearing RUL prediction using ANN and DCT 

 
In the pre-processing stage input vibration signals are used to 

calculate the RMS values from which the Euclidean distances 

are calculated and the bathtub curve is constructed as well. 

The degradation curves are then constructed using the 

estimated Euclidean distances. Also the vibration signal was 

transformed into different domains and results used as inputs 

to the ANN predictor of RUL. The input features to the neuro 

predictor as illustrated in the block diagram are the vibration 

signal values in time domain, selected coefficients of the 

discrete cosine transform (DCT) of the vibration signal, and 

the dominant harmonics of the FFT of the vibration signal. 

Using each of the three described input features; three 

computer programs have been designed under MATLAB 

(R14). The programs are used to build, train, and optimize the 

ANNs for the groups of inputs and also for testing the ANN 

performance in RUL prediction. 

 

Vibration signal recorded for a bearing in the vertical or 

horizontal directions carries important information regarding 

its health condition and expected life time. The overall 

vibration signal expressed in RMS of vibration amplitude is a 

one measurement value commonly used for detection of 

bearing failure [10]. The RMS value usually used to construct 

the bathtub curve, Fig. 4 is a typical example of the failure 

stages of one of the tested bearings. According to vibration 

severity as per ISO 10816-1 class I for small machines, the 

unacceptable level range is 4.5-45.9 mm/sec RMS. In the 

present study, the life of the bearing is considered to end when 

the vibration level of the vibration signal reaches 12 mm/sec. 

 

The RMS values of the recorded vibration signals are used 

also to estimate the Euclidean Distance (ED) and construct a 

degradation curve for the considered bearing, Fig.5. In 
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mathematics, ED is the distance between two points that 

simply can be measured with a ruler, and is given by the 

Pythagorean Theorem. Euclidean distance is related to Euclid's 

geometric principles [11]. In the present study, ED is 

calculated using Eq. (1).  

 
222 )()( ttRMSRMSED rttr   

         (1) 

Where:  

 RMSt: Root Mean Square value at time (t).                       

 RMStr: Root Mean Square value at failure time (tr).   

 

The ED is used as a figure of Merit (FOM) for the degradation 

rate of the bearing and in the supervised training for the 

validation of the ANN. The degradation curve, shown in Fig. 5 

is a very useful tool for understanding the failure behavior and 

reliability of the bearing and estimating bearing RUL. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  Bathtub curve and the Euclidean 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

Figure 5.   A typical degradation curve 

 

IV. Results and discussion 
The degradation curve, Fig. 5, shows the change in the RUL 

with the service life of the bearing. Two distinct stages can be 

observed along the life span of the bearing with two different 

failure rates (change in the RUL). A constant rate of change in 

the RUL (constant failure rate) is observed in the early stage 

of the bearing life then a significant increase in the failure rate 

is observed near the end of the bearing life. As expected the 

first stage which represents the normal life of the bearing is 

much longer than the wear out stage near the end of the 

bearing life.  

 

Fig. 6 shows two degradation curves of the front bearing (F) 

based on the recorded vibration signals in the vertical 

direction, under two different conditions of the accelerated life 

test. The two life-tests were performed at same speed (3500 

rpm) with two different loads (2288 N and 1987.5 N). In the 

meantime, Fig. 7 shows two degradation curves of a similar 

bearing in the vertical direction at the same load of 2288 N but 

at two different speeds of 3500 rpm and 1800 rpm. 

 

 

 

 

 

 

 

 

 

 
Figure 6.   The degradation curves for FV at Loads 2288 N 

 and 1987.5 N, and the same speed (3500 rpm) 

 

 

 

 

 

 

 

 

 

 
Figure 7.  The degradation curves for FV at 3500 rpm and 1800 rpm, 

 and the same load (2288N). 

 

Fig. 6 shows the effect of the load on service life of a bearing at 

a high but constant speed. At 35000 rpm and 2288 N, the 

recorded bearing life was 35 hours. Decreasing the load to 

1987.5 N led to a significant reduction in the bearing life to 22 

hours. Although this results look unreasonable at first instant, 

however it can be explained by the fact that at speeds near the 

resonance of main system components lager loads seem to give 

a damping effect than relatively smaller loads. This justification 

is supported by results of the modal test represented by the 

frequency response function curve (FRF) of the test rig at loads 

of 2288 N and 1987.5 N, Fig. 8. FRF represents the system 

output response due to an exciting force. In this test, FRF is 

measured in terms of (mm/sec)/N. Analysis of Figs. 8-a and 8-b 

shows that the system has a resonance at frequency of 116 Hz 

(i.e. double the rotational speed fr of the system) and the 

magnitude of the FRF at that frequency is greater at a load of 

2288 N, Fig. 8-b, compared with that at a load of 1987.5 N, Fig. 

8-a. This is also observed at most resonance frequencies above 

200 Hz, especially at bearing faults frequencies lying in this 

frequency range. This proves that the system at the lower load 

1987.5N is more sensitive to vibration and hence failed faster 

than that at the higher load 2288 N. 
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Figure 8-a. FRF curve at load=2288 N and speed=3500 rpm for FV 
 

 

 

 

 

 

 

 

 

 
Figure 8-b.   FRF curve at load=1987.5 N and speed=3500 rpm for FV 

 

The effect of speed on the service life of a bearing at a 

constant load is shown in Fig. 7. At 3500 rpm and 2288 N, the 

recorded bearing life was 35 hours. Decreasing the speed to 

1800 rpm under the same load of 2288 N led to a significant 

increase in the bearing life to 80 hours. So, it can be concluded 

that running at higher speeds results in faster failure as long as 

the load remains the same.  

 

Spectral analysis was carried out for the recorded vibration 

signals of the two life tests at two different loads, Fig. 6 and 

those at two different speeds, Fig.7, using the vibration 

analyzer to identify the generation and development of the 

bearing failure along its lifetime. Spectral analysis was carried 

out at three time intervals representing 5 %, 60 %, and 92.5 % 

of the bearing service life as illustrated in Figs. 9 and 10. 

  

Fig. 9 shows the spectra of the front bearing vibration at a load 

of 2288 N and speed of 3500 rpm after 3hrs of running (5% of 

bearing life), Fig. 9-a, after 25 hrs of running (60% of bearing 

life), Fig. 9-b and after 33 hrs of running (92% of bearing life), 

Fig. 9-b. In the meantime, Fig. 10 shows the spectra at a load 

of 1987.5 N and speed of 3500 rpm after 1.5 hrs of running 

(5% of bearing life), Fig. 10-a, after 14.5 hrs of running (60% 

of bearing life), Fig. 10-b and after 20 hrs of running (92% of 

bearing life), Fig. 10-c. 

 

 

 

 

 

 

 

 
 

Figure 9-a.  FFT spectrum of FV bearing vibration record at Load=2288 N 
and Speed=3500 rpm after 1 hr (5% of the life span). 

 

 

 

 

 

 

 

 
 

Figure 9-b.  FFT spectrum of FV bearing vibration record at Load=2288 N 

and Speed=3500 rpm after 25 hrs (after 60% of the life span). 

 

 

 

 

 

 

 

 

 

 
Figure 9-c.  FFT spectrum of FV bearing vibration record at Load=2288 N 

and Speed=3500 rpm after 33 hrs ( after 92% of the life span). 
 

 

 

 

 

 

 

 
Figure 10-a.   FFT spectrum of FV bearing vibration record at Load=1987.5 N 

and Speed=3500 rpm after 1.15 hrs (after 5% of the life span) 

 

 

 

 

 

 

 

 
Figure 10-b.  FFT spectrum of FV bearing vibration record at Load=1987.5 N 

and Speed=3500 rpm after 14.5 hrs (after 60 % of the life span) 

 
 

 

 
 

 

 

 
 
Figure 10-c.  FFT spectrum of FV bearing vibration record at Load=1987.5 N 

and speed=3500 rpm after 20 hrs (after 92 % of the life span) 
 

Analysis of Figs. 9-a, 9-b and 9-c shows dominant harmonics 

at frequencies of 58 and 116 Hz which correspond to the 

rotational speed (fr) and its second harmonic. Also, dominant 

harmonics are observed at frequency 233 Hz which 

corresponds to the ball fault frequency (BSF) and also at its 

higher harmonics at 464, 697 and 930 Hz. Near the end of the 

service life, Fig. 9-c, frequency components are observed at 

640, 1280 Hz which correspond to the second and fourth 

harmonics of the inner ring fault frequency (BPFI) and also 

side bands are observed at the first and second harmonics of 

rotational speed (58 and 116 Hz) around the harmonics of both 

BSF and BPFI. 

 

Examination of the three Figures shows significant increase in 

the amplitude value of the harmonics at 116 Hz (2 fr), 232 Hz 
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(BSF), 464 Hz (2 BSF), 697 Hz (3 BSF), and 930 Hz (4BSF) 

which indicates the failure of the balls of the bearing as 

running time increases. The increase in the value of the 

amplitude at 640 Hz (2BPFI) and 1280 Hz (4BPFI) indicates 

the failure of the inner ring of the bearing as running time 

increases. Inspection of Fig. 9 shows that up to 60% of the 

bearing service life, most of the dominant harmonics 

representing the bearing failure lie in the range up to 800Hz. 

Only few harmonics appear above this range near the end of 

the bearing life as seen  at 92% of the service life, Fig. 9-c. 

Similar conclusions can also be drawn from Figs.10-a, 10-b, 

and 10-c, but the amplitudes are significantly higher and the 

rate of failure is much faster. Analysis of the FFT spectrum of 

the system vibration signal and its dominant harmonics 

provides an effective tool for diagnosis of bearing state of 

health which is an accurate indicator of its remaining useful 

life. A software module was developed for spectral analysis of 

the recorded vibration signals using both FFT and DCT. The 

developed software module can be used if the analyzer is not 

available.  

 

Recorded vibration signals were transformed from the time 

domain to the frequency domain using DCT using the 

developed software. The DCT expresses a sequence of finite 

data in terms of a sum of cosine functions of different 

frequencies [12, 13]. For a set of data A= {a0, a1, a2,..,an-1 }, a 

one dimensional discrete cosine transform coefficients can be 

computed using the following formula, Eq. (2): 
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Where n is the number of data points. 

 

Discrete cosine transform (DCT) coefficients are the weights 

that indicate how strong the frequency components are in the 

data. For each DCT coefficient, there is a base frequency f and 

accordingly a base vector. If the set of data consists of 

correlated values, then most of the DCT coefficients will be 

either zero or very small numbers, and only a few are large. 

 

Data dimensionality reduction is the main feature of DCT 

since most of the energy of the system is concentrated in a 

limited number of frequencies which will represent the 

selected DCT coefficients [14, 15]. Another software module 

was also developed under MATLAB (R14) to evaluate the 

DCT coefficients of the vibration signals. Calculated DCT 

coefficients for the considered cases are shown in Figs. 11 and 

12, which show obvious change in the calculated DCT 

coefficients by the change in applied load, rotational speed and 

service life of tested bearings. Analysis of the DCT 

coefficients provides an effective tool for prediction of bearing 

state of health, consequently its remaining useful life. 

 

Although FFT and DCT provide effective tools for prediction 

of bearing state of health and its remaining useful life, 

however correct interpretations need an expert with extensive 

knowledge and past experience. Artificial Neural Networks 

(ANN) as an artificial intelligence tool [16] provides a 

powerful means for prediction of bearings RUL based on the 

current state of the bearing as expressed in its vibration signal 

and the past records of its performance along its service life. 
 

 

 

 

 

 

 

 
 

Figure 11-a.  DCT analysis of recorded vibration signal at Load=2288 N and 
Speed=3500 rpm, after 1 hr (5% of the life span) 

 

 

 

 

 

 

 

Figure 11-b.  DCT analysis of recorded vibration signal at Load=2288 N and 
Speed=3500 rpm after 25 hrs (after 60% of the life span) 

 

 

 

 

 

 

 

 
 
Figure 11-c.  DCT analysis of recorded vibration signal at Load=2288 N and 

Speed=3500 rpm after 33 hrs (after 92% of the life span) 
 

 

 

 

 

 

 

 

 
Figure 12-a.   DCT analysis of recorded vibration signal at   Load=1987.5 N 

and  speed=3500 rpm after 1.15 hrs (after 5% of the life span). 

 

 

 

 

 

 

 

 

 
 

Figure 12-b.   DCT analysis of recorded vibration signal at  Load=1987.5 N 

and  speed=3500 rpm after 14.5 hrs (after 60 % of the life span). 
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Figure 12-c.  DCT analysis of recorded vibration signal at, Load=1987.5 N 

and speed=3500 rpm after 20 hrs (after 92 % of the life span). 
 

V. The Neuro Predictor 
Artificial neural networks represent a large class of parallel 

processing architectures useful in solving several types of 

problems. The ANN consists of multiple units called neurons 

or nodes that can perform transformations by means of their 

state response to input information. A neural network is firstly 

trained iteratively with a set of samples, known as the training 

set. [17-19]. Using the training set the artificial neural network 

can learn the values of its internal parameters [20]. The RUL 

of test bearings was predicted using an artificial neural 

network (ANN). Using each of the three described input 

features, three computer programs have been designed under 

MATLAB (R14).The programs are used to build, train, 

optimize the construction of the ANN for the considered 

groups of inputs and test the precision of prediction. Accurate 

RUL prediction provides early warning capability where it 

will be possible to detect, estimate the severity of and isolate 

faults [21-23].  

 

In the present work three ANNs were designed, trained and 

validated for the prediction of bearing RUL based on features 

extracted from the vibration signals. Inputs to the three ANNs 

included the applied load on the bearing in Newtons, the 

rotational speed in RPM and the test time along the bearing 

service life. Besides these three inputs, the first ANN was fed 

by the time domain vibration signal, the second ANN was fed 

with the dominant harmonics of the FFT of the vibration 

signal and the third ANN was fed with 20 selected DCT 

coefficients of the vibration signal. In all cases the ED 

estimated from the overall vibration level expressed in RMS 

values was used as a measure of bearing remaining useful life.  

 

The number of input nodes in the ANN input layer was 8192 

in the case of using the vibration values in the time domain, 

150 nodes representing the dominant FFT harmonics or 20 

selected DCT coefficients. The input vectors at the specified 

measurement times are input as a matrix with each column 

representing an input vector. The output layer of the ANN is 

an identity matrix with diagonal length equal to the number of 

input vectors. The activation function between input and 

hidden layers and between hidden and output layer is assumed 

to be pure linear. The maximum number of epochs for training 

was taken to be 50000; the error goal was (10
-6

). 

 

Three MATLAB (R14) programs were built for training and 

testing the ANN depending on the nature of and the number of 

inputs. Based on the extracted features considered, the 

network was trained using the preliminary parameters of 

construction. Based on obtained initial results, a final ANN 

configuration was optimized. Fig. 13 shows a typical training 

curve for one of the applied ANNs. The desired relative error 

was reached after 329 epochs (training runs). 

 

 

 

 

 

 

 

Figure 13.  Training epochs and the sum squared error of the input 

 

After training and getting the most suitable network 

configuration, a test mode was applied to ensure that the 

network will give the same response when the same inputs are 

applied at any time. The test results are represented in Table 1.  

 
TABLE 1.    Results of the ANN predictor for the case of P=1987.5N and 

S=3500 rpm Of FV Bearing 

Features  Extraction 

Techniques 
Time-Domain FFT SDCT 

No. of trained 

samples 
8192 150 20 

Max. epochs 10000 10000 10000 

Error goal 0.000001 0.00001 0.000001 

Max. learning rate 0.01 0.01 0.01 

Training epochs 

871,870,1424, 

1366,1688,676, 
645,395,345 

312,313.346, 

219,354,329, 
175,492,323 

111,119,105, 

79,116,169, 
95,149,369 

No. of I/P neurons 8192 150 20 

Defined sample 45 45 45 

No. of tested samples 45 45 45 

undefined sample 0 0 0 

No. of  hidden  neurons 100 100 100 

Absolute error -0.015:0.015 -0.005:0.0035 -0.025:0.005 

Relative error 
-6*10-4 

:10*10-4 

- 4*10-4 

:4*10-4 

-5.5*10-4 

:2.5*10-4 

 

The results proved that the designed ANNs are all capable of 

accurate prediction of tested bearing RUL based on the 

specific features extracted from the vibration signals. A 

maximum relative error of (-6*10
-4

 to 10
-3

) was recorded when 

using the time domain vibration signal (8192 neurons). On the 

other hand, a minimum relative error of (- 4*10
-4

:3*10
-4

) was 

recorded when using the dominant FFT harmonics of the 

vibration signal (150 neurons). A relative error of (-5.5*10
-4

 to 

2.5*10
-4

) was recorded when using the selected DCT 

coefficients of the vibration signal (20 neurons). 

 

These results indicate a good performance for the proposed 

neuro RUL predictor with both FFT and DCT. The experiment 

was repeated for a wider range of load and speed and similar 

results were confirmed. 

 
Frequency, Hz 
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VI. CONCLUSIONS 
A test rig was designed and built to perform accelerated life 

test of deep groove ball bearings. Effect of bearing load and 

speed on the bearing life was investigated. Overall vibration 

level expressed in RMS values of tested bearings was used to 

evaluate the state of health of the bearings. Euclidean distance 

(ED) estimated from the overall vibration level expressed in 

RMS was used to build bearing degradation curve and 

measure bearing RUL. Spectral analysis of recorded bearing 

vibration signals along its service life in the form of FFT and 

DCT was analyzed and related to the state of health of tested 

bearings. 

 

An ANN neuro-predictor as an artificial intelligence tool has 

been proposed to achieve accurate estimate of the RUL of a 

bearing. The proposed ANN model uses three forms of input 

features. Besides the bearing load, speed, and time along 

bearing service life, inputs to the ANN included the time 

domain vibration signal, the dominant FFT harmonics or 20 

selected DCT coefficients. The bearing RUL expressed in 

terms of estimated ED values was taken as the output. A 

maximum relative error of (- 6*10
-4

 to 10
-3

) was recorded 

when using the time domain vibration signal (8192 neurons). 

A minimum relative error of (- 4*10
-4

:3*10
-4

) was recorded 

when using the dominant FFT harmonics of the vibration 

signal (150 neurons). A relative error of (-5.5*10
-4

 to 2.5*10
-4

) 

was recorded when using the selected DCT coefficients of the 

vibration signal (20 neurons). 

 

Obtained results prove that the proposed ANN provides an 

effective tool for predicting the RUL of bearings using an 

accelerated life test. Input features in the case of FFT 

harmonics and DCT coefficients are more practical due to the 

limited number of input features to the ANN. 
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