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Abstract—Since cable vibrations cause cable-stayed bridge 

users discomfort and may also lead to bridge collapse, 

assessment and control of dynamic behavior of stays are key 

aspects in designing such a bridge type. Mounting viscous 

dampers close to deck anchorages is an efficient way to control 

all kind of cable vibrations. In the paper, relevant issues as 

parametric excitation, external excitation and cable-structure 

interaction are investigated in order to define the required 

damping ratio to control the dynamic stability of stays. The 

study ends with a damper design example, referring to a 

relevant case study. 
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I. Introduction 
Assessment and control of dynamic behavior of stays are 

key aspects in designing cable stayed bridges, as 
demonstrated by several vibration episodes occurred in all 
over the world as those described in [1]. Moreover, since the 
stays are very flexible elements, with small damping 

coefficients ( ≤ 0.50%), they are very vulnerable to 
vibrations induced by dynamic actions. 

Aim of this paper is to investigate the dynamic stability 
of stays under indirect excitation and to define a possible 
countermeasure for its improvement. 

Considering that mounting viscous dampers close to 
deck anchorages is an efficient passive measure to control 
all kind of cable vibrations, this control technique is 
discussed and the design of a suitable viscous damper is 
illustrated referring to a relevant cases study. 

II. Cable vibration phenomena 
In cable stayed bridges, dynamic actions induced by 

wind, traffic and earthquakes produce also an indirect 
excitation of cables through the motion of their anchorages. 
Generally two kind of excitations are distinguished: external 
and parametric. The former corresponds to a motion of 
anchorages perpendicular to the cable chord, the latter 
corresponds to a motion of anchorages in the direction of 
cable chord. Designers also have to verify cable-structure 
interaction: if some cable frequencies are close to bridge 
global frequencies, an internal resonance could occur. 
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III. The case study 
The considered case study refers to a cable-stayed bridge 

designed to cross the river Arno in Figline Valdarno, a town 
near Florence [2]. This self-anchored cable-stayed bridge 
has a total length of 281 m with three spans respectively of 
44 m, 37 m and 200 m (Fig. 1). The S355 steel box girder is 
trapezoidal, 2.00 m in depth and 14.96 m width (Fig. 2), and 
the 12 mm thick orthotropic steel deck plate is reinforced 
with trapezoidal stiffeners spaced 600 mm center to center. 

The deck is suspended to a pylon via 17 pairs of locked-
coil strands forming an asymmetric semi-fan; these cables 
are 15.0 m spaced on the girder and 3.75 m on the pylon. 
The concrete A-shaped pylon has a total height of 96.00 m. 
All substructures are founded on piles with a diameter of 
1.60 m. 

Structural analysis has been carried out with SAP2000®. 

IV. Case analysis 

A. Natural frequencies of cables 
Natural frequencies of cables have been evaluated with 

Mehrabi and Tabatabai formula [3] as reported in a 
companion paper [4]. Table I summarizes these results, 
together with cable inclination (), cable chord length (L), 

cable sag at midpoint (f), cable diameter (D) and cable 
tension at the dead load configuration (T). These cables are 
sensibly stretched, so in the analysis an equivalent stiffness 
has been taken into account through the Irvine 
parameter [5], without resorting to more refined theoretical 
models [6]. 

TABLE I.  NATURAL FREQUENCIES OF CABLES. 
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Figure 1.  The cable-stayed bridge analyzed. 

 

Figure 2.  The bridge deck. 

B. Parametric excitation 
As known, the usual approach to the study of parametric 

excitation consists of an evaluation of the cable resonance 
condition from dynamic equilibrium equations of a single 
cable under harmonic motion of its supports. 

The response to a harmonic of frequency  is not 
increased exclusively at resonance (when the fundamental 

frequency of cable 1=), but also at specific ratios 

=/1=2/=1/r={1/2;1/3;2;3} [1]. 

Considering the first parametric resonance in 

correspondence of a subharmonic of order 1/2 (
2
=1, r=1/2, 

=2), the threshold amplitude for occurrence parametric 
excitation is given by 

 01limB, 4= Xx   (1) 

where )/(= 00 AELTX is the elastic elongation of the cable 

[1]. The threshold amplitude of oscillation has been 
calculated for bridge stays considering three possible 
damping coefficients: 0.2 %, 0.5 % and 1.0 % (Fig. 3). 
These values are lower for stiffer stays (#4 to #7). 

Fig. 4 shows amplitudes of steady-state oscillation (xB) 
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Figure 3.  Threshold amplitude of parametric oscillation for =1. 

 

Figure 4.  Amplitudes of steady-state parametric oscillation for 

xB = 20 mm. 

for a sinusoidal excitation of 20 mm amplitude, at twice the 

cable frequency (=1) [1]. 

A damping ratio of 1.0 % affects only the behavior of 
weaker stays. In general, damping is important only to 
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prevent parametric excitation: once oscillation sets up the 
amplitude is almost damping-independent [1], as clearly 
shown in Fig. 5 for stay #7. 

C. External excitation 
External excitation induces amplitudes of vibration 

almost halving those induced by parametric excitation, 
which are therefore considered the most important [1]. This 
aspect appears clearly comparing diagram in Fig. 6, 
referring to amplitude of steady state external excitation of 
stay #7, with the previously discussed Fig. 5. 

 

Figure 5.  Amplitudes of steady-state parametric oscillation for stay #7. 

 

Figure 6.  Amplitudes of steady-state external oscillation for stay #7. 

Amplitudes of steady-state external oscillation for stay 
#7 have been calculated through the solution developed by 
Nayfeh and Mook in the vicinity of primary resonance 
(r≈1) [7]: 
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The phase of response  is obtained by numerical solution of 
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D. Cable-structure interaction 
Cable-structure interaction can be studied through the 

ratio r of fundamental cable frequency f1c to bridge global 
frequency fb. The value r≈1 defines the region where global 
modes may provide external excitation. Subharmonic 
(r≈0.5) and superharmonic (r≈2) resonance conditions 
bound two nonlinear interaction regions, where global 
modes may provide parametric and angle variation 
excitation of local modes respectively [8,9]. The excitation 
from angle variation between cable tension and bridge girder 
is a phenomenon detailed by Gattulli and Lepidi and Gattulli 
et al. [9,10]. 

Fig. 7 and Fig. 8 show values of r considering each cable 
frequency (Table I), ten first vertical global modes and first 
torsional mode (Table II). It emerges that: stays from #3 to 
#11, #16 and #17 are vulnerable to external excitation of six 
first vertical global modes; all stays are vulnerable to 
parametric excitation of higher global modes; and stays #2 
and #9 are vulnerable to angle variation excitation. 

TABLE II.  BRIDGE GLOBAL FREQUENCIES. 
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Figure 7.  Ratio bridgec1 /= ffr  for modes V1-V5. 

 

Figure 8.  Ratio bridgec1 /= ffr  for modes V6-V10 and T1. 

V. Damper design 
As already anticipated, mounting viscous dampers close 

to deck anchorages is an efficient way to control all kind of 
cable vibrations. Moreover this is the least expensive 
technique in retrofitting existing bridge suffering from 
wind/rain-wind induced vibrations. Therefore, the evaluation 
of damping needed is crucial in preventing large cable 
vibrations. 

For all stays a damping ratio 1 > 0.3 % is generally 
recommended as appropriate to control dry inclined 
galloping and rain wind induced vibrations [4]. 

However for cable stays longer than 80 m provisions 
should be made for the installation of dampers to ensure that 
critical damping ratios exceed 0.5 % in the first mode [11]. 

Focusing on the longest stay (#17, L=206 m), neglecting 
intrinsic structural damping and taking account of all 
vibration modes in the range (0.3÷3) Hz [1], a damping ratio 

 > 0.3% is requested for the first five modes: 

  T
Hz97.2Hz38.2Hz78.1Hz19.1Hz6.0=f . 

The simplified formula derived by Fujino and 
Hoang [1,12] was used in the design of an optimal passive 
damper: 
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where 

 is a bending stiffness coefficient appearing in the 
Mehrabi and Tabatabai formula; 

xc is the distance of the damper from the cable anchorage; 

Lxk cnn   is a non-dimensional damping parameter; 

0101 ffk nnn   is the ratio of n-th cable frequency 

to the fundamental frequency of corresponding taut 

string 

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m

T
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=01

; 

Rn is a reduction factor due to sag effect; 

REJ is a reduction factor due to bending effect; 

kk  1EJEJ  is a non-dimensional damping parameter 

related to the stiffness k of support and to the bending 
stiffness of damper; 

2

EJ 5.01 qrq  is a non-dimensional damping 

parameter related to the bending stiffness of the 
damper; 

  Txk ck   is a non-dimensional damping parameter 

related to the stiffness k of support; 

RkEJ is a reduction factor associated with the support 
stiffness. 

Assuming that viscous damper is linear, the maximum 
modal damping ratio is obtained by 

 EJ
c
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5.0=

/
kEJn
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and occurs for 
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With damper inserted in a deviation guide of height 

h=2.5 m and an inclination of cable chord =25°, 

m6=sin/=c hx  and 03.0=/c Lx . For stay #17 =609, 

so REJ=0.97 and 

  T017.5013.4010.3007.2020.1=k  

   .45.000.187.000.194.0=
T

nR  

Neglecting support stiffness, the achievable maximum 
modal damping ratio is 

 

 T%629.0%397.1%215.1%397.1%313.1maxξ  

occurring for 

   .0.220.270.360.541.07=
T

optη  

Setting 3.0=5  in (6) and solving for , it 

results 61.0= . Knowing that 
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and that for stay #17 01=3.54 rad/s, the requested damper 
size is 

 .kNs/m 60Ns/m 62759= c  

Finally, referring to the so-called universal curve 
reported in Fig. 9, the abscissas 

 
2
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can be evaluated, 

  T4.313.442.581.720.88=x , 

so obtaining the modal damping ratios 

  T%30.0%81.0%87.0%26.1%28.1ξ , 

which demonstrate that a critical damping ratio 1=1.28 % is 
sufficient to control all kind of cable vibrations of stay #17. 

 

Figure 9.  Universal curve relating modal damping ratio ξn with damper 

size c, location of damper xc and cable parameters m, L and ω01 [1]. 

VI. Concluding remarks 
The dynamic stability of stays under indirect excitation 

has been investigated for a relevant case study. In particular, 
parametric excitation, external excitation and cable-structure 
interaction have been considered. 

The results confirm that damping is very significant to 
prevent parametric excitation, while external excitation is 
less important because it induces smaller amplitudes of 
vibration. Moreover, cable-structure interaction is a relevant 
matter for the considered bridge. At the end, a viscous 
damper has been designed as possible countermeasure for 
the improvement of dynamic stability of stays. 
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