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BEM analysis of rc cracked bridge slabs 
M.Y. Minch, A. Kmita 

 
Abstract— The purpose of this work is to present some 

aspects and main problems of theory and computations of RC 

(reinforced concrete) bridge slabs. The differential equation of 

the cracked bridge slab, using the classical variational method 

is worked out. The equation of bridge slab deflection with the 

boundary conditions and compatibility conditions in the crack 

are obtained. The total differential equations in the class of the 

general functions are shown.  In this model the effect of 

discontinuity of the first derivative of deflection functions is 

taken. The numerical results of an approximate method of 

solutions of RC cracked plates with boundary element method 

(BEM) are shown. 

Keywords—Boundary Element Method (BEM), analysis, 

reinforced concrete (rc), crack, slab, bridge  

I.  Introduction 
Reinforced concrete constructions exhibit very 

complicated behavior that widely differs from homogenous, 
i.e. steel structure. The structural reinforced concrete (RC) 
system is composed of different materials, such as cement, 
steel bars, aggregate, etc. Moreover each material shows 
various physical phenomena. These heterogeneities and 
additional defects that are caused by cracks in the concrete, 
lead to the non-linear behavior of entire structure. If the 
defects that are caused by the cracks in the concrete are 
treated as continuous functions, this gives an unsatisfied 
solution because of the summation of the assumption and 
solution errors. Therefore adequate mathematical modeling 
of the construction is so important since the final error 
appears solely in solution phase. 

The real behaviour of reinforced concrete bridge slabs 
differs widely from the results of a linear elastic 
computation. At the beginning of loading RC construction 
shows non-linear deformations because of non-linear 
concrete stress-strain relation. As an example of such 
behaviour, the characteristic load-midpoint deflection curve 
(P-w) of RC rectangular slab shown by Borcz (1963) is 
demonstrated in Fig.1. Even under working loads Pu and 
obviously up to failure loads Pgr

III
, the curve is extremely 

non-linear that is additionally caused by non-linear stress-
strain relation of reinforcement bars and discontinuity of the 
slab.  

The  first change of the stiffness is caused by the 
beginning of cracking for cracking load Prys. Construction 
becomes heterogeneous as a result of cracks and bond-slip 
between concrete and reinforcement. The crack, treated as a 
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defect, causes the zoning of the structure region.  Each of 
the zones is connected with another one by means of 
reinforcement bars appearing in the cracks. So, the edges of 
the cracks are not free from tension at the points of 
connections and simultaneously the general vector of 
displacements has a jump equal to the opening of the crack. 
Additionally, the forces of the broken adhesion between 
steel bars and concrete as well as some other transverse 
forces appear in crack areas. Under greater loading the 
further propagation of cracks are shown up to second 
reduction of the stiffness, when the reinforcement begins to 
yield Pgr

II
. This finally leads to the failure load Pgr

III 

associated with the crushing of concrete. For load Pgr
IV

, the 
slab reaches limiting membrane state. The forces as 
discussed above, can cause a fundamental redistribution of 
stresses in the cracked construction compared with the 
homogeneous one. This thesis has been proved by a number 
of experimental tests for RC slabs. 

As a result of stiffness reduction caused by cracking, the 
values of bending moments are lower compared with those 
ones obtained from the linear elastic theory. Thus the 
reinforcement in cracked zones could be divided in a better 
possible manner. Additionally as a result of bending 
moments that are decreasing in cracked zones, RC slab can 
be more loaded before reaching limited strain (point E) or 
local failures (point F).  

A typical characteristic disloading and reloading line has 
been shown in Fig. 1.  The separation of elastic w

e  and 
plastic deflection  w

p
, has been  assumed  according  to  

small  strain  theory.  Such assumption makes computation 
for this process much easier. 

 Figure 1. Characteristic load-midpoint deflection curve of RC slab. 

The purpose of this paper is to present some aspects and 
main problems of distribution theory and computations of 
RC bridge slabs. The first investigations for distribution 
model of  RC beam and slabs with cracks were made by 
Borcz [1]. This paper expands distribution beam and slab 
Borcz's models for RC cracked bridge slabs. It was assumed 
that computations are valid for service loads because most 
of the constructions are loaded within the limits (that is, 
limits between points A and C). In this loading area the 
linear theory of elasticity as well as yield line theory appears 
to be not valid.  
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This paper contains a mathematical model of a 
reinforced concrete planar structure formulated in terms of 
general functions of distribution theory of Schwartz [2]. The 
physical hypothesis about discontinuous change of 
displacement, caused by the cracking of the extension zone 
in the concrete, with the associated fundamental solution 
and the assumption of rotating cracks, is included in the 
model. Stress intensity factors can be calculated using J-
integral or other methods. The mathematical model is 
formulated for two-dimensional space that can solve 
problems in elastostatics, plate bending or Poisson’s 
equations. The model of bending bridge slabs includes the 
horizontal forces what cause conjugation of the plane stress 
state and the bending state and additionally allow to 
calculate the prestressed construction. The boundary 
element method has proven to be an effective technique for 
calculating stresses, displacements and stress intensity 
factors in crack analysis. Here the application of non-linear 
boundary element method (BEM) is used to the analysis of 
cracked RC bridge slabs. The results of numerical examples 
are presented below.   

II. Assumption 
The arbitrary slab as shown in Fig. 2 is considered. The 

slab has arbitrary homogeneous boundary conditions and is 
arbitrary forced with load  p.  

Figure 2. Scheme of the slab with crack  

The region of slab is divided by the curve  , means 

the crack, in two zones and  with bound    and  

. The curve has two ends  and  . The normal 

external direction cosines n of the edge  of regions and  

 have different sign. The crack line has been crossed by 

the line means the reinforcement bar. After cracking the 
real steel bar appears inside the crack area and connects the 

both sides of the crack. The line outside the crack area 
symbolize the line of broken adhesion where the bond-slip 
occurs. The considered model can be easy generalized to 

any amount of cracks and steel bars .  

III. Material properties 
The concrete properties should be included in the biaxial 

domain. Therefore the biaxial stress-strain relation and the 
failure criterion of concrete depends on the results of the 
tests that are performed to obtain these relations. The biaxial 
tests of Kupfer [3] for short time loading and proportionally 
increasing load proved to be the most reliable. Link [4] 
developed an incremental formulation for the tangent 
stiffness of the concrete on the basis of Kupfer's tests (see 

Fig.3). The stresses are normalized in terms of the uniaxial 
cylinder strength, in order that the formulation can be used 
for different grades of concrete. The failure criterion cannot 
be used as plasticity condition, because it describes a 
boundary for the maximum stresses and does not allow any 
statements about the plastic deformations.  

The envelope of the limit curve is described by the three 
subdomains. First subdomain of biaxial tension (I) has the 
following limit stress in concrete: 

fct  .         (1) 

Second subdomain (II) for region of tension-compression  
can be written as follows: 
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Third subdomain (III) for region of biaxial compression 
can be written with following formulas: 
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Figure 3. Biaxial  state of stresses by the formulation of Link [4] 

The comparison of stress-strain relation between test 
results of Kupfer [3] and analytical formulation of Link [4] 
was shown on Fig. 4. The demonstrated above concrete 
physical law of Link was used in the computation of the 
planar structure within the presented method. 

Figure 4. Stress-strain relation of concrete. 

The stress-strain relation of steel bars was taken as a 
well-known  elastoplastic relation from uniaxial tests. 
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IV. Bond-Slip characteristic 
After the cracking of the concrete, the tensile forces in 

the cracked area are transmitted by bond to the 
reinforcement that consists of steel bars. Along the segments 
of broken adhesion the steel bar cooperates with the 
concrete through the tangential stresses distributed on the 
perimeter of the bar.  The slip is defined as a relative 
displacement between reinforcement bars and surrounding 
concrete. The increment of tensile stresses in the steel bar 
was approximated by the third-degree curve. Hence, the 
tangential stresses and bond-slip relationships, as 
representation of the stiffness of the bond has been found to 
be in agreement with the tests of Dörr & Mehlhorn [5], (i.e., 
the second-degree distribution along the segment  lf, where lf  
means  distance  between cracks). 

Some characteristic bond-slip relations of the tests of 
Dörr & Mehlhorn [5] under different transverse compression 
are shown in Fig. 5.  

 

Figure 5. Comparison of the  relationship with lateral pressure. 

V. Creep of concrete 
The creep function presented by Bažant & Panula [6] 

(for basic and drying creep and shrinkage) is most suitable 

for concrete structures because the parameters can be 

calculated only from the concrete composition. What more, 

the values obtained from his formulae agree with 

experimental data very well. For calculation, the model 

developed by Bažant & Panula [6] was used. 

The creep function for drying was written as follows: 

                ),,(),,(),(),( 00 ttCttCtJtJ pd    ,      (4) 

where ),( tJ - basic creep; Cd  - increase of creep caused by 

drying; Cp  - decrease of creep after drying (with beginning 
time of drying - t0). 

Particularly, for calculation the approximate relaxation 
function is very useful: 

Particularly, for calculation the approximate relaxation 

function is very useful: 
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Thanks to that, the value of E''(t, can be written as 

follows: 
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and the relationship between stress and strain in concrete has 
the following form: 

                              AtttEtc  )(),()( 0  ,                             (7) 

where ),(),(1)[( 000 ttJttEtA c  ; t) - strain in pressed side 

of a slab. 
The creep function of concrete was taken from the 

rheological model with the creep function as below ( fc'  
means the 28 days compressive strength of concrete): 

            ]))()((1[
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The presupposition similar to the linear creep theory of 

concrete in compression is used for bond creep with bond 

creep coefficient b. Naturally in accordance to - 

relationship of Dörr & Mehlhorn [5],
 
bond creep cannot be 

described by linear theory. The model of Rotasy & Keep [7] 

was applied to describe the creep of the bond in the cracked 

concrete, where the time-dependence of bond in the loaded 

state exhibits a similar behavior as concrete in compression. 
 

VI. Constitutive laws for crack 
width 

The physical law of the crack opening r was taken from 
the beam analogy formulated by Borcz [1], the general 
assumption of the cracks' theory and the equilibrium 
conditions in the crack. This can be written in the following 
incremental form: 

                        )n,n()s()s()s( ep
MNrrr                          (9) 

where Nn - tensile vector; Mn - bending moment normal to 

the crack line s;   - nonlinear function of  N and M.  

The zone of slab  is connected with another one   by 

means of reinforcement bars appearing in the cracks.  So, 
the edges of the cracks are not free from tensions at the 
points of connections. The components  r of (9) are given 
from RC element tests as well as from general assumption of 
crack theory and equilibrium conditions in the crack. 

 Note, that the vector r  (i.e., modified Burgers 

vector depending additionally on inner forces in the crack) is 

divided on elastic e
r and plastic p

r parts respectively. Such 

formulated modeling allows to assume any arbitrary form of 

the physical laws of the crack's width. 

 

VII. Mathematical model of the 
bridge slab 

It was assumed that the crack s exists in the region of the 

structure with the edge Band crack c . The crack 
is connected with the local coordinate system (s,n).   

The discontinuous variational problem of surface 
integral is considered. The difference of internal and 

external forces works  U  and p(x)w  respectively, taken 
from linear theory of elasticity as well known relation 

moment-deflection-curvature  M = M((w)) has the form:  
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          


  d)(w)()))(w(fD(U))(w(wJ xxpxMx     (10) 

where D - stiffness of the cracked plate; M - vector of 

moments; (x) -  curvature as a second derivative of 
deflection w. 

We are looking for the extreme of the functional (10) 
with set of permissible values of deflection w(x1,x2) in the 

region . As we assumed above the crack divides region 

 into  and   respectively. 

The searching function w(x) is in the class of function w 

C0()C4() (for x   function w'(x) has 
singularity). 

Necessary condition for w as a real deflection of slab is 
zeroing of first variation of functional (10). By applying 
Green's integration by parts we can change the surface 
integral as a sum of surface and curvilinear integral 
respectively. With moments M as a function of curvatures  

M = M((w)) we obtain differential equation of the slab: 

                  ,    , 21)(
D

1
)(w  xxpx                      (11) 

associated with combination of elementary boundary 
conditions: 
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and compatibility condition in the crack: 
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Here )w(
~
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~

MV  ,  are differential operators as follows: 
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where   - curvatures in fixed point on the crack line  

Here [ . ] means difference of left and right side limit of 

expression in square braces on the curve 

                          fff s
  limlim][ .     (15) 

It can be easily shown that using the assumption of the 
distribution theory of Schwartz [2], constitutive law of 
defect (9) and properties (12)-(14), the eq. (11) has the 
following form:            
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The differential equation of deflection w(x) in terms of 
general functions was obtained. 

Using functional way of description with distribution in 

form of Dirac's- we can write final general differential 
equation of cracked slab, appropriate boundary and 
compatibility conditions in the crack respectively: 
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VIII. Mathematical model of the 
plane stress plate 

As was assumed above the plate can be also loaded in its 
plane. It means that the problems of  presstresed slabs can be 
solved. The horizontal loads may act on the edge for 
presstresing model of the slab with Jacks as well as inside 

the slab on the line   where pre-tensioning of the slab is 
realized. 

The discontinuous variational problem of surface 
integral for displacement (plane stress state), in the same 
way as considered above for bending slab, was solved.  The 
equilibrium equations, constitutive law and strain equations 
are assumed to be represented by well-known theory of 
elasticity relations. Analogue to equation 10 we are looking 

for the extreme of the functional of strain energy U  with 
set of permissible displacement value u(x): 

   ,))-))))=)] 


d((d((d((U([J s xuxpxuxbxuxu     (18) 

where u(x) - displacement vector; b(x) - body forces. 

The searching function  u(x) is in the class of function   

u C
2
() (for x   function  u(x) has singularity). 

Applying Green's transformation with relations stress-
strain-displacement S-E-u we obtain differential equation of 
plane stress plate: 
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associated with combination of elementary boundary 
conditions: 
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and compatibility condition in the crack: 
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tension: 

                      ,)(.)div  
2

2~
((.)

~
n1P







                       (22) 

where  1 - a unitary tensor; n - normal vector external to the 

edge  

It can be easily shown that using Schwartz [2] theory and 
(20)-(22) the eq. (19) has the following form (see Minch & 
Styś [8]):  
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Using functional way of description with distribution in 

form of Dirac's-we can write final general differential 
equation of RC cracked plate in plane stress, appropriate 
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boundary and compatibility conditions in the crack 
respectively:  
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where  b(x) was taken in following form:    

                           b(x) = 
2

xuP ))(~(
~ .                   (25) 

IX. Model of the crack 
From the theory of defects and fundamental Green 

solution as a beginning support function, one can obtain 
discontinuity of Burgers' vector that is mathematically 
defined as the difference of the limits of the general 
displacement functions on both of the crack's edges (the 
crack is treated as a binary boundary), for bending state with 
following properties:    

                ,   ,),()(]
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
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Here r(x) means density of defect as a continuous 

function for  x. The defect has been characterised by 
the discontinuity of the first derivative of deflection 

function. The assumption of internal crack   was taken. 
This can be easy proved. Hence on the remaining part of 

curve  the condition (26) yields 0]n/w[   , for x 

. Note, that the tension continuity on  the  edges  of  
the  cracks  is  ensured by reinforcement bars which appear 
in the cracks.  

For plane stress state of the plate as above the Burgers’ 
vector has following form: 

            ),(1)(
21

Nxrxu                               (27) 

with boundary conditions  ,0)(
s

r
)(

s

r
 21  








  

 
Here as above r(x)  means density of defect as a 

continuous function for  x and [u] = 0 for x 

. Equation (27) satisfies compatibility condition in 
the crack, where the displacement vector has a jump on a 
bound of crack. Because of the assumption of internal crack 

 , hence on the remaining part of curve  the 

condition  [u] = 0 yields,  for x  . Moreover the 
second condition of (27) in the essential way completes the 
definition of the defect.   

The continuity condition in the crack is written as 

follows: 

                            0)w,(
21
 u  ,                            (28) 

where  ˆnC  (differential operator that means normal 

derivative to the crack line ); n - vector of direction 
cosines; C - elastic constants’ tensor. 

The properties (26)-(27) ensure discontinuity of the 
derivative of the deflection w and the displacement vector u 
on the curve s respectively (displacement of the crack for 
plate in plane stress and opening angle for bending slabs), 

whereas the property of (28) ensures continuity of tension 
vector N and bending moment M (  dhN  - where h means 

the thickness of the structure). The tension continuity on the 
edges of the cracks is ensured by reinforcement bars which 
appear in the cracks. Because of the finite number of steel 
bars existing in the cracks, the fulfillment of the tension 
conditions (28)  take place only in the discrete way for the 
points in which reinforcement bars occur (see Fig.2 – line 

. Outside the reinforcement points, on the remaining edge 
segments of the cracks, the boundary conditions should be 
equal to the conditions corresponding to the free edges. 
Note, the nonlinear condition (28) causes conjugation of  the 
plane stress and  the bending state in an analogical way as 
for the solution of large deflection.  

To satisfy the condition of (27), the modeling on the 
crack edges by the dipole normal forces for the panels with 
following properties was assumed:  

                                  )(][ 1 sgu sn
   ,          (29) 

where Lame’ constant, g(s) - density of the dipole forces 

acting on the crack line s. 

 
To satisfy the condition of (26), the modeling on the 

crack edges by the dipole normal moments for the slabs with 
following properties were assumed: 

                                  )(][ 1 sgDsn
 ,                    (30) 

where n  = first derivative of deflection wn; Dstiffness of 

the cracked slab; g(s) = density of the dipole normal 

moments acting on the crack line s. 

 

Note, the dipole forces and dipole moments are self-

balanced and do not cause the changes of the loading of the 

construction. 

 

X. Modeling by Boundary 
Element Method 

The formulation based on the indirect BEM is applied. 
The crack is modeled using general function for 
displacement discontinuity and the associated fundamental 
solution. 

The integral equations are formulated using the singular 
solutions associated with a point force Fk and a point 
displacement discontinuity ck. Let (uF)ik(P,S) represent the 
displacement ui  at the field point P due to a unit value of Fk 
applied at the source point S. Similarly, let (urc)ik(P,S) 
represent the displacement ui at the field point P due to a 
unit value of ck  applied at the source point S. 

By distributing the point force Fk on the boundary B the 

displacement discontinuity ck. on the crack boundary  and 

bond force k  on the reinforcement line boundary   we 

obtain by superposition: 

 

                        

B

SdsSkFSPikuFPiu )()(),()()(  

        
  

 )S(ds)S()S,P()u()S(ds)S(kc)S,P(ik)urc( kik  .     (31)
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The boundary B represents the boundaries of the body, 

which can be simply or multiply connected. The crack 

boundary  represents the path of one or more cracks, 

which can be smooth, kinked or edge cracks. The 

reinforcement line boundary   represents the line near the 

crack area where the bond-slip between concrete and steel 

bars occur. 

Similarly, the stress equation can be written as: 

 

                 

B

SdsSkFSPijkFPij )()(),()()(   

   

 

 )S(ds)S(k)S,P(ijk)()S(ds)S(kc)S,P(ijk)rc(      (32) 

where (F)ijk , (c)ijk  and ()ijk are obtained by 

differentiation of (uF)ik,  (urc)ik  and (u)ik  with respect to the 

field point P. 

The curvilinear integral for the edge (31) can be 
interpreted as a some external forces modeling the defect by 
the forces taken from (29) compare with the constitutive law 
for crack width (9) and (27). The acting forces are self-
balanced and do not cause the increments of external 
loading of construction. Equation (31) is the integro-
differential equation because the right side of (31) depends 
directly on functions u and in addition functions u depends 
indirectly on the physical law (9). The rest of the equations 
are also the integro-differential equations. 

The fundamental function (x,y) of considered problem 

is taken from Gefland & Szyłow [9] solution as follows: 

                                  )ln(
16

1
)( 22 


                        (33) 

where 2
2

2
1

2 ΦΦ  ; (x-y) for =1,2. 

The components of the fundamental solution (x,y) and 

proper derivatives of (x,y) expresses the components of 
general displacement vector u and general stress tensor S at 
the point x, cause by unit concentrated force acting at the 
point y in the direction x2. At the point x-y=0 the solution 
(33) has singularity of 1/x type. Hence the solution of (31) 
and (32) is possible in means of curvilinear integral 
principal value.    

The final solution of singular integro-differential 
equations describes an accurate mathematical model of 
cracked RC bridge slab. The presented solution includes the 
discontinuity of first derivative of deflection function that is 
the jump on a bound of crack places and simultaneously 
satisfying continuity of general tension vector on both sides 

of the defect . Such formulated model of RC cracked slab 
can be relatively easily written and solved in terms of 
boundary element method formulations. Because of fact that 
deformation behavior depends on the history of the loading 
as well as the nonlinearity of the material properties hence, 
the equations and definitions of the boundary element 
method in the rate form were assumed. According to the 
small strain theory, the total strain rate for inelastic problem 
can be divided into an elastic and inelastic part of the total 
strain rate tensor. Herein, the inelastic strain mean any kinds 
of strain field that can be considered as initial strain, i.e., 
plastic or viscoplastic strain rate, creep strain rate, thermal 
strain rate and strain rate due to other causes.  So now we 
can write the final equations of the considered problem in 
terms of nonlinear BEM formulations (Brebbia et al. [10]) 

for fictitious traction vector p and body forces' b, finally 

leading to the initial stresses 
p
 
 

(see also Minch [11]): 

                  )(],[ T
xQxFBpAuH   pw    ,               (34)                           

where u - displacement vector; w - deflection; x vector of 

unknown edge traction; p - vector of  fictitious traction; 
p
 - 

vector of initial stresses.  

Here the matrices  H and A are the same as for elastic 
analysis, matrix B due to the inelastic stress integral, matrix 
F  refers to the fundamental function cause by forcing 
traction with vector x, i.e., modeling  density of  crack  
opening for panel and  slab respectively, while matrix of 
bond Q includes bond-slip relations and other displacements 
due to aggregate interlock and dowel action of  
reinforcement in the crack, related to displacement u and 
deflection w.  

XI. Stress intensity factors 
When the state of stress near crack end reaches a critical 

value, concrete will fail by fracturing. Fracture of concrete 
can occur in two different ways. First as the cracking type, 
when the state of stress is either in the tension-tension state 
or tension-compression state and the stress exceeds the limit 
value. Second as the crushing type, when the state of stress 
is in the compression-compression zone and the stress 
exceeds the limit value. When concrete cracks, the material 
loses its tensile strength only normal to the crack direction, 
retaining its strength parallel to the crack direction.  

A lot of papers deal with criteria and experimental 
methods for the determination of FM (fracture mechanic) 
parameters. Designing practice shows that fracture 
toughness play many times very important role. As a 
criterion of crack propagation of RC structures are used and 
applied FM parameters (see Bažant & Cedolin [12]).   
Stress intensity factors could be calculated using different 
methods, e.g. using the crack tip field characterization, the 
energy interpretation, the weight function method and line 
integral techniques. Many computer programs now have 
inbuilt FEM and BEM sub-routines which will calculate K 
from a choice of methods. These may include direct 
substitutions for K formula using the computed values for 
displacement adjacent to the crack, energy methods where K 
is obtained by differentiating the potential or strain energy 
as well as evaluating the J and C integrals.  

For presented model the method with possibilities of 
applying in BEM is necessary. For example first, by the J-
integral method as used by Portela et. al. [13] in BEM where 
the scheme was modified slightly to incorporate the tractions 
on the surface of a pressurized crack. The J-integral method 
requires the evaluation of additional integral expressions for 
the displacement gradients. Second, by using the crack 
opening displacement method, based on the value of ck near 
the crack tip, as used by Sur & Altiero [14] also in BEM. 
This method depends on the polynomial approximation and 
the location of the node. Third, by using four terms of a 
series solution for stresses near the crack tip, as used by 
Miskioglu et. al. [15] for experimental calculation of stress 
intensity factors, in conjunction with the least square 
method. A simplified representation of the series solution 
[15] is given as follows: 
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where 
2
1n  , and  

                  
2

K
A I

0     (38)  ;       
2

K
B II

0    (39) 

The stresses in the vicinity of the crack tip (eqs.35-37) 
are written as a series using polar coordinates with the origin 
at the tip of the crack.  

The least square method overcomes the shortcomings of 
the above two methods, however it is more sensitive then 
the J-integral to the points used in calculation. 

J integral may be evaluated by performing a contour 

integration involving field variables and an integration 
path which encloses the crack tip as well as thermal or 
residual stresses arising from initial strains tensor as follows: 

                       








 



d
x

)ds
x

Wdy(J
0

E
S

u
T       (40) 

where W - strain energy density i.e.  ESdW ; T - traction 

forces vector; E - strain tensor; S - stress tensor. 
C

*
 integral is obtainable directly from J integral by using 

the elastic analogue which states that the solution of a 
problem of stationary creep can be obtained from the 
solution of a problem of nonlinear elasticity by the 

following substitutions: E  E (the creep rate dE/dt); S  

S (the effective creep stress). Thus equation (40) transforms 

to: 

                        








 



d
x

)ds
x

dyW(C
0

** E
S

u
T




     (41) 

where W
*
 - modified strain energy density i.e.  ES dW* . 

XII. Numerical calculations 
The results' correctness depends on the choice of the 

right type of boundary elements and a careful discretization 
of the structure. The influence of this on the problem to be 
studied cannot be neglected.  The appropriate simulation of 
the load-carrying behavior of RC structure is more important 
than the accuracy of the numerical calculations. The 
question concerning what kind of numerical methods should 
be used cannot be answered satisfactorily.  

Equation (34) must be solved numerically with iterative 
and incremental techniques.  Iteration results are due to the 
fact that the right side of (34) depends directly on functions 
u and w. In addition functions u and w depends indirectly on 
the physical law (9). The incremental computation is caused 
by the rate form of (34). The modified Newton-Raphson 
method was applied to the iteration and incremental 
computations. 

The programme of the BEM Analysis, named PLATE, 
for two-dimensional problems was designed. The PLATE 
analysis includes the procedures of: Modelling System (MS), 
where the model of construction is built, the Analysis 
Module (AM) where the problem with iterative and 
incremental method is solved and finally using MS the 
results are obtained (RES). The iterative and incremental 
technique used in the (AM) connect all material properties 
with crack physical laws and edges conditions.  

Let us suppose that the boundary of the slab is 
represented by linear elements while the part of its  interior 
where cracks are likely to occur is discretized into a number 
of new boundary represented also by linear elements. The 
lines of broken adhesion between steel bars and concrete are 
the next lines of discretization. Under these assumptions, 
linear picewise functions are chosen to interpolate tractions, 
deflections and „initial stresses”, the two former over 
boundary elements of edges and the latter over cracks and 
lines of broken adhesion between steel bars and concrete. 
The unknowns produced by this discretization are 
interrelated by a series of coefficients found by integrating 
over boundary elements, cracks and broken adhesions' lines. 

XIII. Numerical example 
To show the possibilities of calculation of presented 

method the simply supported bridge plate (l=10.0 x b=5.0 
m, thickness h=0.5 m) was solved. The scheme of the plate 
is shown on Fig. 6. 

The plate was reinforced fabric: the bottom zone with 

8 mm bars each 15 cm and  mm bars each 33 cm, the 

top zone with  mm bars each 33 cm. The plate was first 
overloaded (to crack appear) with the concentrated force 
P=785 kN acting on the top zone of the plate, then unloaded 
and finally loaded with uniform distributed loading (p=14 
kN/m

2
).  

Figure 7 shows the comparison of bending moments of 
elastic (M22E) and cracked (M22C) bridge plate. Note, that the 
fundamental redistribution of the bending moment M22 in 
the cracked zone is observed. 
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Figure 6. The scheme of the bridge slab 

 

Figure 7. Comparison of elastic (M22E) and cracked (M22C) moments of 
the cracked bridge plate 

 

XIV. Conclusions and final 
remarks 

The boundary element method offers several advantages 
over finite elements such as, the possibility of working with 
boundary extending to infinity and having smaller systems 
of equations. Another very useful feature of the BEM is the 
admissibility of discontinuous basis function (see Brebbia et. 
al. [10], what give more accurate results for stress 
concentration regions near the cracks zones. In the finite 
element formulation, values of the shape functions for 
elements are required to be continuous along their common 
boundaries. On the other hand, there is no such requirement 
in the boundary element method. As a result, the amount of 
the discontinuity of the junction between elements can be 
used as a measure of the adequacy of the meshing. At last 
BEM require much less data than finite elements to run the 
same problem. This last characteristic is, without doubt, the 
most interesting feature of boundary elements for the 
practicing engineer or user. 

The numerical results obtained for the problems of 
cracked slabs indicated that the presented methods are 
capable to predict sufficiently and satisfactorily response of 
RC planar structure. The considered problems are complex 
and very complicated.  More analysis, numerical results and 
experimental data are still needed. More realistic 

descriptions of aggregate interlocking and dowel action are 
also necessary.    

The problem of crack propagation can be solved by 
evaluating Rice's integral along the contour of the crack top 
zones, where for different specimens the stress intensity 
factor could be found (see Styś & Minch [16]).  
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