
316

Hyperspectral image compression using chain codes
Israel Chávez-Delgado, Hermilo Sánchez-Cruz, Juan Humberto Sossa-Azuela

Abstract—Usually hyperspectral images are managing by the

study of many scientific areas, particularly in microscopic

pollution particle content. However, researchers of this field need

to handle large amount of data and study the image to recognize

the type of particle appeared in environment.

In this work we face the problem of hyperspectral image

compression, by proposing chain code representations and an

entropy encoder. We obtain that the most efficient chain code is

F8 combined with a context-mixing algorithm.

Keywords—chain codes, hyperspectral images, compression

I. Introduction
Hyperspectral images contain a wealth of data, but

interpreting them requires an understanding of exactly what
properties of the materials we are trying to measure, and how
they relate to the measurements. Traditionally experts in the
search of particles in microscopy images have used the
reflection, absorption and fluorescence properties, in the area
of visible as in the invisible spectrum, like infrared or
ultraviolet [1].

In reflected-light spectroscopy the fundamental property
that we want to obtain is spectral reflectance, that is the ratio
of reflected energy to incident energy as a function of
wavelength. Reflectance varies with wavelength for most
materials because energy at certain wavelength is scattered or
absorbed to different degrees [2]. In this case sensors to obtain
wavelength can be used, but we use intensities instead of
wavelength because is cheaper.

One of the problems faced by the experts is the number of
images to analyze, and the size of them, so one of the solutions
to this problem, is compression. Thus, before searching
properties we need to reduce size of the files, we cannot just
analyze the complete images because depending of the number
of specters that we are using it will increase the space of
memory. Therefore, in this work we tackle the problem of
compression data for this kind of images by using chain codes.

In this work we use a simple of concrete Stone, in four
spectrum colors, blue, green, ultraviolet and violet, in Figure 1
we show the sample obtained with white light. The image was
taken using a microscope Iroscope MG-321FL.

Israel Chávez-Delgado, Hermilo Sánchez-Cruz

Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas
Mexico

chavez.israel25@gmail.com, hsanchez@correo.uaa.mx

Juan Humberto Sossa-Azuela

Instituto Politécnico Nacional, Centro de Investigación en Computación

Mexico
humbertosossa@gmail.com

Figure 1. Concrete stone sample obtained with white light.

With the chain codes, we can obtain the information
required without occupying much space in memory storage.
Commonly chain codes are used to represent the contour of
binary images. So, we can take advantage of this method to
use it in grayscale images, to find pollution particles in
microscopic samples. This pollution particles have high pixel
intensity, so, these parts have a specific set of substrings of the
chain codes. If we can find these substrings, we could find the
pollution particles in all the images more easily.

Although, there are the Crack Codes, given by F4 [3], 3OT
[4] and VCC [5], as a first approach to the representation and
compression problem in hyperspectral images, we used the
chain codes F8 [3], AF8 [6] and F26 [7] because they are
adequate to represent grayscale images, and are more versatile,
to maintain shape information given by intensities when
visiting the pixel coordinates in position and intensity. This
chain codes to grayscale image are richer in symbology and
information, giving us the facility to find characteristics and
patterns, unlike the Crack Codes that are orthogonal.

For this reasons, the chain codes we use are: F8, AF8 and
F26.

Freeman's code for eight directions (F8) is introduced in
1961, it has the set of symbols F8 = {0, 1, 2, 3, 4, 5, 6, 7}
denoting a movement in a counter-clockwise with an angle of
45° between each symbol-direction. See Figure 2.

Figure 2. The eight directions of the Freeman code.

International Journal of Advance in Computer Science & its application – IJCSIA 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 7 : Issue 2 [ISSN : 2250-3765] - Publication Date: 25 June , 2018

317

AF8 was proposed by Kui and Zalik in 2005, it is based on
changes obtained with every pair of F8 code vectors when
following the contour [8]. This chain code is invariant under
rotation. See Figure 3.

Figure 3. The eight directions of AF8 code.

F26 chain code works using 26 neighborhood, which
means face, edge and vertex-connectivity. As with F8, this
chain code is not invariant under rotation [7, 9]. See Figure 4.

Figure 4. The 26 directions of the Freeman code.

A. Compression Methods
In this subsection we describe briefly, the different

compression algorithms used in this work.

M. J. Weinberger, et al presented their LOCO-I/JPEG-LS
lossless image compression algorithm, this has great
compression ratios, equaling or even beating schemes based
on arithmetic coding [10].

Wu and Memon introduced their Context-based, Adaptive,
Lossless Image Coding (CALIC) algorithm, this was superior
to its immediate predecessor, the Universal Context Modeling
(UCM) method for 2% [11].

David A. Huffman developed his compression algorithm in
1952 called Huffman algorithm. This algorithm take an
alphabet of n symbols along with their associated frequencies,
and produces a Huffman code for that alphabet and those
frequencies [12].

Arithmetic coding is a form of entropy encoding used in
lossless data compression. When a string is converted to
arithmetic encoding, frequently used characters will be stored
with fewer bits and not-so-frequently occurring characters will
be stored with more bits, resulting in fewer bits used in total
[13].

In Section 2 we explain the method used in this work, in
Section 3 we present the application of our method and his
respective explanation and in Section 4 we make a discussion
and analysis of the results and in section.

II. Method
Before the analysis in the images is performed, we need to

reduce the noise in the background. For this we tried with
different filters, like, Gaussian blur, median, posterization,
average blur and reduce noise. With these filters the size of the
files decreased, but only one of them keep the same visual
information as the original images, posterization. Which is the
reduction of the tonal range of an image to a few similar
colors, involves the conversion of a continuous gradation of
tone to several regions of smaller number of tones [14].

In Table I we can see the behavior of the posterized
images. We obtained results using posterization of 8, 16, 32,
64 and 128 gray levels to see which one is the best to analyze.
We can see in the Table I, in posterization 8 and 16 the
distortion can be observed easily, so this two posterized files
are discarded immediately because the loss of visual
information is high. In the posterization 32 the distortion is not
so high, but it can be observed also; so we discarded it too. We
cannot see clearly the difference between the posterized
images with values 64 and 128, so we need to compare their
respective chain codes files.

TABLE I. POSTERIZED IMAGES COMPARISON

Original Posterized 8

Posterized 16 Posterized 32

Posterized 64 Posterized 128

International Journal of Advance in Computer Science & its application – IJCSIA 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 7 : Issue 2 [ISSN : 2250-3765] - Publication Date: 25 June , 2018

318

Once we obtain the posterized images we proceed to
obtain the chain codes. For this we have to obtain the pixel
intensity of the grayscale image. Then, we go through the
values in zig-zag order, i.e. the first row is visited from left to
right, the second from right to left and so on. But there is a
little difference in how this method works with F8 and how it
works with F26. The difference is that in F8 we obtain the
symbols only for the values on the rows, and in F26 since it
gives us the possibility to move in a 3D way, we obtain the
same symbols plus extra symbols that represents a move to the
next row. See Fig. 5.

Figure 5. Obtaining chain codes in zig-zag order.

We represent the direction symbols of F26 using letters,
from A to Z. In our case we don't use the 26 symbols, we only
use 11 of them, eight that represent the same movements as in
F8, and three that represent the movement to one row to the
next. In Table II we show the movement direction of the 11
symbols we use.

TABLE II. MOVEMENT DIRECTION OF F26 USED SYMBOLS

Symbol Movement (x, y, z) Symbol Movement (x, y, z)

A (0, 1, 0) Z (0, 0, -1)

I (0, 1, 1) Q (0, 1, -1)

Y (0, 0, 1) O (1, 0, 0)

M (0, -1, 1) G (1, 0, 1)

E (0, -1, 0) W (1, 0, -1)

U (0, -1, -1)

To codify the image first we obtain its pixel intensity
matrix, and start at the top-left value. With the aid of an
auxiliary variable AuxVar with value 0 at the beginning, we
compare it with the intensity I(i, j), in this case i and j are 0.
We follow the next algorithm.

1. If I(i, j) is greater, we increase AuxVar by one, and
add the symbol 6 for F8 and Y for F26.

2. If the I(i, j) is equal, we compare AuxVar with
I(i,j+1).

a. If AuxVar is greater by two or more, we
decrease AuxVar by one, and add the symbol
2 for F8 and Z for F26.

b. If AuxVar is greater by one, we decrease
AuxVar by one, add the symbol I for F8 and
Q for F26 and set the value of I(i, j+1).

c. If AuxVar is less, we increase var by one,
add the symbol 7 for F8 and I for F26 and
move to I(I, j+1).

d. If AuxVar is equal, add the symbol 0 for F8
and A for F26 and move to I(I, j+1).

Note: We must take into account that for even rows the
direction of how we obtain the chain codes is from left to
right, and for odd rows the direction is from right to left, the
above method is explained for and even row, so if we want to
use it for an odd row we just have to change the right symbol
for the left symbol.

Figure 6. Example of an odd an even row coding the intensities of an image

In Figure 6, the example in the left is the codification of
the first row, that is why it begins in the pixel 0, 0 (being 0, 0
the lower-left pixel) of the matrix, only in this case we have to
start there, in the next rows we will start in the higher intensity
pixel in the first column (in even rows the first column will be
the left one and in odd rows it will be the right one).

In F26 we have to add a few extra steps since F26 give us
the possibility to obtain the chain code of the transition from
one line to another. So we will use this extra steps only if we
reach the last value of the line, and we will compare AuxVar
with the I(i+1, j).

1. If AuxVar is greater by two or more, we decrease var
by one, and add Z.

2. If var is greater by one, we decrease var by one, add
W and move to I(i+1, j).

3. If var is less, we increase var by one, add G and
move to I(i+1, j).

4. If var is equal, we add O and move to I(i+1, j).

After obtaining the chain codes we can realize that the
posterization reduce the noise in the images without losing
visual information and reduced peaks in the chain codes
giving chains with more uniform symbols, reducing the
inconsistency in these, this is a great help when we want to

International Journal of Advance in Computer Science & its application – IJCSIA 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 7 : Issue 2 [ISSN : 2250-3765] - Publication Date: 25 June , 2018

319

obtain regular languages of sub chains, making the process
classification more accurate and in less time.

We can see in Table III the behavior of the chain codes in
the original and posterized image. In the original there are
many peaks, and in some areas there is too much noise, and in
the posterized almost all the peaks were flattened, making the
noise to be reduced.

TABLE III. CHAIN CODES BEHAVIOR USING POSTERIZATION

Original

Posterized 64

After obtaining the chain codes we proceed to compress
the chain codes with the most common compressors
(Huffman, Arithmetic, JLS, CALIC and COMI). As we
mentioned before, we rejected the posterization values of 32,
16 and 8, so we first proceed to compare the compression of
images posterized at 64 and 128. We take into account the
next step, which is apply Huffman, arithmetic and COMI
algorithms. Comparing the posterized image at 128 with those
of 64, the difference of the size is not that high, but about 100
Kb, hence, it has to outperform the JLS and CALIC, and the
size of posterized 128 files, is smaller than those of CALIC,
but is bigger than JLS files. Thus, we decide to use the
posterized image at 64.

In Figure 8 we see how the posterization affect the images
depending the value of posterization we use. We can observe
easily that lower the value, greater the error. The error is the
difference between the original image and the posterized
image. Here we can realize why we chose to work with the
value 64, the error in 64 is almost 0, the average value in all
the images is 1.6% so we can conclude that loss of visual
information cannot be seen with an error of 1.6% or less.

Figure 7. Percentage of error using Posterization..

III. Application
To apply our method, we use a sample composed of four

images obtained with different spectrum lights, blue, green,
ultraviolet and violet of a concrete stone, where the chain
codes where obtained through the method explained in Section
2.

Below it is shown the results of the compressors applied on
the chain codes, first there are Huffman and Arithmetic,
Tables 4 represent the average results in bytes of these
compressors. We can see that Huffman gives files with bigger
size than those obtained with arithmetic, although the
difference is not much. If we compare the results in the three
tables we can realize that the chain code that works better with
these compressors is AF8 and the best compressor is
Arithmetic.

TABLE IV. F8 HUFFMAN & ARITHMETIC

File Original Huffman Arithmetic Average

F8 3,667,930 1,024,671 956,047 1,882,883

AF8 3,666,890 800,422 773,743 1,747,018

F26 3,670,538 1,174,138 1,126,666 1,990,447

Average 3,668,453 999,744 952,152

We think that we can improve the results of the previous
compressors and decided to use other compressors like CALIC
and JPEG-LS and COMI that give us results of smaller size
with respect to the Huffman and Arithmetic. Although JPEG-
LS give better results in the Green Spectrum the expert makes
the analysis in all the images, as some properties may appear
in some images and in others not. Table 5 shows the results
obtained using the other compressors. We used COMI for the
three chain codes we are using: F8, F26 and AF8. They gave
similar results in almost all spectral images, but the one that
give us the best results was F8. For COMI we use the letter C.

International Journal of Advance in Computer Science & its application – IJCSIA 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 7 : Issue 2 [ISSN : 2250-3765] - Publication Date: 25 June , 2018

320

TABLE V. COMPRESSION OF POSTERIZED IMAGES AT 64 GRAY LEVELS

 Blue Green UV Violet Average

BMP 1,303,158 1,303,158 1,303,158 1,303,158 1,303,158

CALIC 470,925 296,256 486,540 477,250 432,743

JLS 437,249 129,340 313,178 307,615 296,846

C. F8 276,006 239,837 308,901 294,177 279,730

C.AF8 281,514 244,422 314,398 299,536 284,968

C. F26 276,911 240,730 310,015 295,222 280,720

As we can observe, using posterized 64 we outperform JLS
and CALIC except for the Green specter, in that case we only
outperform CALIC. Something that caught our attention was
that with Huffman and Arithmetic AF8 compress better than
F8, but using COMI F8 is the one that compress better, we
have to analyze why this happens, but as a first approximation
we can say that is because Huffman and Arithmetic do not use
reliance on previous symbols to compress and COMI use a
combination of dependencies.

IV. Results
The main reason for image compression is to reduce the

data without affecting visual information and properties of

images. If we try to analyze them without reducing the noise,

the chain codes strings are too big, increasing the number of

symbols and the time of the analysis. In Fig.10-12 we show

the behavior of the symbols before and after using

posterization.

Figure 8 represents the frequency of the symbols of F8, we

can see that there are two symbols that dominate over the

others in both original and posterized images, 2 and 6. And

observing Figure 9(b) we can see that the frequency of the

symbols 0 and 4 is bigger than the original, this is because the

noise in the original make many peaks, and when we

posterize, those peaks are flattened making more back and

forward directions.

In Figure 9, we see the frequency of the symbols of AF8

and as in Figure 8 the shapes remain in both images, the

original and posterized at 64. But the difference between AF8

and F8 after posterization is that the noise reduction works

better for AF8. In AF8 the reduction symbols is so high in

almost all except only in one, reducing even to zero one

symbol (3). The only symbol that was increased is 0, and this

is because this symbol represent a straight movement no

matter if it is up, down or even tilted. As in F8 the noise

reduction create more flattened areas, but unlike F8, AF8 is

invariant under rotation, so it has no symbols for respective

directions, so one symbol can be used for many directions.

Figure 8. Frequency of F8 symbols, Original and Posterized 64.

Figure 9. Frequency of AF8 symbols, Original and Posterized 64.

In Figures 8 and 9 we observe that they maintain the same

behavior, which is the reduction of symbols that could

represents peaks in the image, and the symbols representing

more flat movements were increased.

International Journal of Advance in Computer Science & its application – IJCSIA 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 7 : Issue 2 [ISSN : 2250-3765] - Publication Date: 25 June , 2018

321

V. Conclusions and future work
After following our proposing method, we can realize that a

sound way to compress chain codes in hyperspectral images is
using posterization and COMI, and the best value to use in
posterization is 64 gray levels. As we explained, values lower
than 64 produce visual loss, which it leads to loss of
properties, something that is not feasible at the moment of
analyze the images for experts. However, higher values than
64 obtain larger chain codes making it a more complex the
analysis.

Knowing which is the best way to decrease noise in the
images, now we have to find which is the best chain code to
work in the analysis before the method is applied. Analyzing
the behavior of the chain codes after and before noise
reduction, the chain code that gives better compression is F8
using COMI, this happens because COMI use different
context to compress, and the one that allows decreasing the
number of symbols more than the others is AF8, keeping
almost all the direction moves to two symbols, 0 and 7.

In future works we will analyze which aspect is better at the

time of analysis, the one that have smaller files or the one that

decrease more the number of symbols. Reducing processing

time is important since we do not know how many specters we

will be using, we have to make thus the process as fast as

possible, taking into account that the results are also correct.

Acknowledgements

The second author thanks to Universidad Autónoma de

Aguascalientes for its support under grant PIING 16-9. H.

Sossa-Azuela thanks SIP-IPN under project 20170693 and

CONACYT under project 65 (Fronteras of Science).

References
[1] Randall B. Smith, Introduction to Hyperspectral Imaging, MicroImages,

vol I. MicroImages, 2012, pp. 3-5.

[2] A. Zehtabian, H. Ghassemian, Automatic Object-Based Hyperspectral
Image Classification Using Complex Diffusions and a New Distance
Metric, vol. 54, IEEE Transactions on Geoscience and Remote Sensing,
2016, pp. 4106-4108.

[3] H. Freeman, On The Encoding of Arbitrary Geometric Configurations,
IRE Transactions on Electronic Computers EC-10, 1961, pp. 260-268.

[4] H. Sánchez-Cruz, R. M. Rodríguez-Dagnino, Compressing bilevel
images by means of a three-bit chain code, Optical Engineering SPIE,
vol. 9, 2005, pp. 1-8.

[5] E. Bribiesca, A new chain code, Pattern Recognition: The Journal of the
Pattern Recognition Society, vol. 32, 1999, pp. 235-251.

[6] Y. Kui-Liu, B. Zalik, An efficient chain code with Huffman coding,
Pattern Recognition, vol. 38, 2005, pp. 553-557.

[7] H. Freeman, Computer processing of line drawings, ACM Computing
Surveys, vol. 6, 1974, pp. 57-97.

[8] H. Sánchez-Cruz, H. H. López-Valdez, Equivalence of chain codes,
Journal of Electronic Imaging, vol. 23, 2014, pp. 1- 11.

[9] H. Sánchez-Cruz, H. H. López-Valdez, F. J. Cuevas, A new relative
chain code in 3D, Pattern Recognition, vol. 47, 2013, pp. 769-788.

[10] M. J. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I lossless image
compression algorithm: principles and standarization into JPEG-LS,
IEEE Trans. Image Process, vol. 9, 2000, pp-1309-1324.

[11] X. Wu, N. D. Memon, Context-based, adaptative, lossless image coding,
IEEE Trans, Commun, vol 45, 1997, pp.437-444.

[12] D. A. Huffman, A method for the construction of minimum-redundancy
codes, Proc. IRE, vol. 40, 1952, pp- 1098-1101.

[13] David J.C MacKay, Information Theory, Inference, and Learning
Algorithms, Cambridge University Press, version 7.2, 2003, pp. 110-
130.

[14] NIIR Board, The Complete Book on Printing Technology, Asia Pacific
Business Press, 2003, pp. 186.

About Author (s):

Israel Chávez-Delgado is an engineer in

Computer Systems graduated in 2014 from

Universidad Autónoma de Aguascalientes

(UAA) in Mexico, and is currently a master’s

degree student in Science with Option to

Computing and Mathematics in UAA.

Humberto Sossa was born in Guadalajara,

Jalisco, Mexico in 1956. He received a B. Sc.

Degree in Electronics from the University of

Guadalajara in 1981, a M. Sc. In Electrical

Engineering from CINEVESTAV-IPN in

1987 and a Ph. D. in Informatics from the

National Polytechnic Institute of Grenoble,

France in 1992. He is a full time professor at

the Centre of Computing Research of the

National Polytechnic Institute of Mexico. His

main research interests are in Pattern

Recognition, Artificial Neural Networks,

Image Analysis, and Robot Control using

Image Analysis.

Hermilo Sánchez-Cruz received the PhD

degree in sciences (computing) from the

National Autonomous University of Mexico

(UNAM) in 2002. He received the BSc

degree in physics from the UNAM in 1995.

He is a full time professor at the UAA in

Mexico. He has collaborated on projects

related to biomedical images and in

recognition of Mesoamerican images. His

areas of interest are pattern recognition,

bidimensional and 3D image recognition, and

computer vision.

International Journal of Advance in Computer Science & its application – IJCSIA 2018
Copyright © Institute of Research Engineers and Doctors , SEEK Digital Library

Volume 7 : Issue 2 [ISSN : 2250-3765] - Publication Date: 25 June , 2018

