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Abstract—The process for classifying a set of data can depend 

on several variables, which can have a non-very direct relation 

among them. Using mathematical techniques such as regression is 

one of the most accepted methods. Moreover, in the last time and 

when number of data is higher and concepts like deep learning 

are applied, artificial neural networks (ANN) are taking into 

account as a method to solve these classification systems. But, 

when these ANN are used, some problems must be resolved in 

order to obtain good results. Some of these problems are 

overfitting and underfitting. In this paper, an approach to the 

resolution of them by means of regularization is dealt with. 
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I.  Introduction 
An ANN is an independent computational element set 

(neurons), totally interconnected to each other, that work 
autonomously but synchronously with the other elements. 

Each neuron receives impulses from other neurons and 
gives them a certain importance or specific weight. After that, 
the neuron transmits the sign to other neurons, or even to itself 
(feedback). Restrictions on the number and the connections 
among neurons limit the type and application field of the 
ANN. 

In order to a correct work of a neural network, that is, to 
give the correct outputs from a certain input set, the ANN 
must learn by means of training the guidelines of the necessary 
calculations to be performed. Normally, these process is based 
on examples or learning pattern. 

The training of a neural network is the modification of the 
weights in order to achieve that each neuron gives the correct 
answer or output, in all situations that it has to learn. 
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It is proved that a multilayer feedforward artificial neural 
network with one or more than one hidden layer is enough to 
approximate any non-linear continuous function in a closed 
interval, provided enough neuron exists in each layer [1]. For 
example, load flow resolution is a non-linear problem, and 
therefore, theoretically it may be solved by means of artificial 
neural networks (ANN). In the fields of load flow and of 
optimization of load flow some satisfactory tests have been 
implemented [2], [3]. In these tests the application of ANN 
improves the results obtained by conventional algorithms of 
load flow. 

The own makeup of the neural networks is not very clear 
to determinate the connection between inputs and outputs, and 
the incorporation to the model of empiric knowledge is an 
arduous task. So, although it is true that the computational 
speed may be increased and changes in data may be adapted, it 
is difficult to find a training method that guarantees a total 
convergence of the ANN in the all cases that the network can 
study. Moreover, the learning time and the number of 
necessary patterns that we have to give to the ANN in its 
training are factors that are not optimized enough [4]. 

 

Fault

distance

tansig

purelin

b[1] b[2]

| VARf / VARp |

| VASf / VASp |

| VATf / VATp |

| IARf / IARp |

| IASf / IASp |

| IATf / IATp |

W[1]

W[2]

 

Figure 1.  ANN structure example. 

 

The back-propagation learning rule is used in perhaps 80% 
to 90% of practical applications. Improvement techniques can 
be used to make back-propagation more reliable and faster. 
Various improvement techniques were applied to the different 
network architectures tested, and it was concluded that the 
most suitable training method for the architecture selected was 
the back-propagation method based on the Levenber-
Marquardt optimisation technique. This technique is more 
sophisticated than the gradient descent used in the back-
propagation technique. [5] 
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II. Regression models 
When we want to evaluate the relationship between a 

variable that for us gives rise to special interest (dependent 
variable that is usually called y) with respect to a set of 
variables (independent variables, which are called x1, x2, ..., 
xn), hypothesis tests normally do not give us enough 
information about the overall relation of all of them, given that 
the typical contrasts of hypotheses are based on relations of 2 
variables, where the possibility of other variables of interest is 
not taken into account and where the meaning of the 
relationship is bidirectional. This is when the application of 
the regression models is appropriate and convenient. The 
regression models allow to evaluate the relationship between a 
variable (dependent) with respect to other variables as a whole 
(independents). The regression models are expressed as 
follows: 

 y = f(x1, x2, ..., xn) + ε        (1) 

The main objective of creating a regression model can be, 
for example, to evaluate how the change in certain 
characteristics (independent variables) affects another 
particular characteristic (dependent variable), called the 
explanatory model; or our objective could be to try to estimate 
or approximate the value of a characteristic (dependent 
variable) in function of the values that can take together 
another set of characteristics (independent variables), called 
then model for predictive purposes. 

There are several options for estimating a regression 
model, and we can stand out, because the ease of application 
and interpretation, the linear regression model and the logistic 
regression model. Taking into account the type of variable that 
we want to estimate (dependent variable or response) we will 
apply a regression model or the other one. Simply put, when 
the dependent variable is a continuous variable, the most 
frequently used regression model is linear regression; whereas 
when the variable of interest is dichotomous (that is, it takes 
two values such as yes/no, male/female), logistic regression is 
normally used. 

Regression models, normally linear or logistic regression 
as we have said, can be used for two purposes: 

1) prediction, when the researcher's interest is to predict in 
the best possible way the dependent variable, using a 
set of independent variables, and 

2) estimation, when the interest is focused on estimating 
the relation of one or more independent variables to the 
dependent variable. 

The result of a predictive model is the model itself, while 
in an estimative model it is the estimation of the coefficient of 
the variable of interest. The second case is the most frequent in 
complex studies where it is tried to find determinant factors of 
a process. 

At the present, neural networks are widely known for use 
in machine and deep learning and also in modelling complex 
problems such as image recognition. In this way, it is possible 
to train a neural network to perform classification of some data 
or regression. Artificial neural networks are easily adapted to 

regression problems. Any type of statistical model can be 
resemble a neural network if these ANN use adaptive weights 
and can approximate non-linear functions of their inputs. 
Therefore, neural network regression is adapted to problems 
where traditional regression models do not fit appropriately a 
good solution. 

 

III. Overfitting and underfitting 
It says that there is overfitting when the error of the 

proposed curve referred to the data is zero or almost zero, that 
is, the proposed curve fits all or almost all data with zero error. 
It seems that it would be perfect, but we have to take into 
account that the shape of the proposed curve can be of 
different types and, what is more frequent, it is possible that 
our data have some noise. So, if our curve is too good that fits 
all our data without any error we must contemplate the 
possibility that the proposed curve is capturing the noise of the 
data. In neural networks, sometimes overfitting happens when 
the model shows low bias but high variance. Normally, 
overfitting is a result of an excessively accurate or 
complicated model, and it can be avoided by fitting several 
models and using techniques as validation or cross-validation 
in order to compare their predictive accuracies on test data. 

 

It says that there is underfitting when the error of the 
proposed curve referred to the data is enough high in several 
of the values of our data or the average of the error of the 
whole curve is high. In this case, we say that the proposed 
curve cannot capture the underlying trend of our data (the 
curve does not fit the data as we expected or wanted or 
needed) and we must find another solution for fitting the data. 
In order to compare the predictive accuracies of the model, 
techniques as validation or cross-validation are very useful 
also to avoid underfitting. In neural networks, sometimes 
underfitting happens when the model shows low variance but 
high bias. Normally, underfitting is a result of an excessively 
simple model. 

Both overfitting and underfitting lead to poor predictions 
on new data sets. 

A. Overfitting 
Both in the case of linear regression and logistic 

regression, we can have hypotheses that fit perfectly or very 
well to the training data but do not reflect well the trend of the 
model, or perhaps fail to generalize to new examples. This 
often happens when we have a high number of input 
parameters which results in very complicated functions with 
many unnecessary curves and angles. 

In the case of linear regression, if we are trying to relate, 
for example, the manufactured units of one product with their 
price, we could happen to the following with a high number of 
parameters. We could obtain the next model: 
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Figure 2.  Overfitting effect. 

 

When in fact we would prefer a model more similar to 

 

Figure 3.  Smooth regression. 

 

In the case of logistic regression this can also happen to us. 
With too many parameters we would get 

 

Figure 4.  Overfitting effect with several data. 

 

When in reality we would prefer a model like 

 

Figure 5.  Appropriate regression with several data. 

 

In the case of facing an overfitting problem we can reduce 
the number of parameters manually, analyzing which are more 
important and, therefore, will preserve, and which seem of 
secondary level and we can eliminate. We can also try to do 
this automatically using some technique like PCA. 
Unfortunately, in this way we will always be losing 
information. 

Another possible option for solving it is to use the 
regularization technique while maintaining all variables. This 
technique works well when we have many input parameters 
and each contributes “a little” in the prediction, because what 
it tries to decrease the magnitudes of all the weights in the 
ANN. 

B. Underfitting 
In the case of linear regression as well as logistic 

regression we can have hypotheses that fit very poorly to the 
training data and that consequently they will also do with new 
examples. This often happens when we have a very poor 
number of input parameters which results in functions that are 
too simple that do not estimate the data well. 

In the case of linear regression, if we are trying to relate, 
for example, the manufactured units of one product with their 
price, we could happen to the following with an insufficient 
number of parameters. We could get a model like: 

 

Figure 6.  Underfitting effect. 

 

When in fact we would prefer a model more similar to 

 

Figure 7.  Smooth regression. 

 

In the case of logistic regression this can also happen to us. 
With too many parameters we would get 
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Figure 8.  Underfitting effect with several data. 

 

When in reality we would prefer a model like 

 

Figure 9.  Appropriate regression with several data. 

 

IV. Regularization 
If we have an overffiting problem in our hypothesis 

function and we know which parameters should be less 
important, we can try to reduce the weight of those terms by 
increasing the cost of the magnitude of the weight θj 
associated with those parameters. Thus, the process of 
minimizing the cost function would try to minimize the 
magnitude of the θj that should influence less. 

Generalizing this idea, making the different θj small or 
close to zero, it helps to have simpler hypotheses and with less 
angulations and, therefore, less propitious to overffiting. This 
is especially true if the contribution to the prediction of the 
different input parameters is similar. 

It is impossible to know in advance which parameters may 
be more relevant in our hypothesis and in what proportion, so 
in regularization we will treat all parameters equally, trying to 
obtain the smallest possible values of θj and thus reduce the 
influence of its associated parameters. Since the term θ0 is not 
associated with any parameter, it is not usually regularized. 

With this purpose, we add to the cost function that we are 
going to use an extra regularization term, an additional cost 
associated with the magnitude of the weights, in the form of  

2

1

n

j
j

 
   . This term will produce, when calculating the 

gradient, an extra term in each component of the gradient of  

· j   (from j = 1 to n, the first term θ0 will not be modified), 

and will thus also minimize each θj (from j = 1 to n, without 
taking into account the first term θ0) [7]. 

λ is a positive parameter called regularization parameter. It 
controls the influence of regularization on the whole process, 
controlling how much importance is given to a good 
adjustment of training data, and how much importance to 
minimize the different θj. If  λ = 0 , there will be no 
regularization. As λ takes on larger values, the influence of 
regularization will increase, resulting in smoother curves. 

An excess in the value of λ may lead to hypotheses too 
soft, and even of constant value, which will end up incurring 
underfitting, so some care is needed when choosing this 
parameter. 

A. Regularized linear regression 
In the case of linear regression the cost function with the 

regularization term would be, 
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which would modify the terms of the gradient in 
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except for the case of j = 0 that would not be modified. 

This causes the weights to be updated at each step using 
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The regularization term produces an effect of multiplying:  

1j
m


 
 
 

 

 . As the subtraction is usually less than unity, the 

effect of this multiplication is, as discussed above, to decrease 
the weight θj in each step before applying the second term in 
conventional form. 

From the point of view of the normal equations we can 
interpret it as the inverse process, by first decreasing the 

values of the weights by the result of pre-multiplying first     

by  λL, where  

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

L

 
 
 
 
 
 
  

  (similar to the unit 
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matrix of (n + 1) × (n + 1) but with the first element null), so 

that  
new L     . Thus, the normal equation would be: 

 

𝑋𝑇 𝑋𝜃 𝑛𝑒𝑤  = 𝑋𝑇𝑦  ⟹   𝑋𝑇𝑋 + 𝜆𝐿 𝜃 = 𝑋𝑇𝑦  (5) 

 

The matrix  TX X L   is always invertible, even though 

the matrix  TX X   is not, so the solution to this equation is 
always unique and we can find it in a single step by means of: 

 

𝜃 =  𝑋𝑇𝑋 + 𝜆𝐿 −1𝑋𝑇𝑦    (6) 
 

 

V. Conclusions 
Artificial neural networks are created before the advent of 

computers and they are capable of learning after a process of 
training. In the fields like recommendation systems and 
machine learning, neural networks are used with the aim of 
classification. The process usually involves methods of 
regression, typically linear or logistic, which has to solve some 
problems such as overffiting or underfitting. In this paper a 
solution of regularization is presented. 
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