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Abstract—This paper reports on the application of correlation 

dimension , largest Lyapunov exponent  and maximum 

approximate entropy  to diagnose the severity of rotor-

to-stator rub in rotating machinery. The method of time delay 

was employed to reconstruct the vibration signal obtained from 

numerical simulation of a Jeffcott rotor subjected to rotor-to-

stator rub. Numerical results showed clear correlation between 

the increase of rub severity with the invariant quantities, ,  

and , investigated in this work. 
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I. Introduction 
It is a well-known fact that simple deterministic systems 

with only a few degrees of freedom could display complex 

chaotic behavior. Such complex chaotic behavior has been 

observed in various fields including, among others, medicine, 

biology, psychology, chemistry, robotics, physics, economics 

and engineering. In the specific field of engineering, evidence 

of chaotic vibrations has been observed in rotating machinery 

subjected to certain faults such as loose pedestal, cracked 

rotors, and rubbing between rotor and stator. Advancement in 

the development of nonlinear dynamic theory in recent years 

has brought about new and effective methods for the analysis 

of complex signals, which appear to be stochastic, but is 

actually inherently deterministic.  

Rotor-to-stator rub has been known to cause serious 

damage to rotating machinery. Rub is usually considered as a 

secondary fault, which is often the result of some other 

primary faults. Muszynska ref.[1] has covered 

comprehensively on rub related vibration phenomena. Lin et 

al. ref.[2] treated the nonlinear behavior of rub related 

vibrations in rotating machines by considering its friction and 

damping coefficients, angular speed and clearance between 

rotor-to-stator. Sun et al. ref.[3] discussed on diverse attractor 

configurations when investigating different regions of chaos 

with the assistance of the rotor trajectory, bifurcation diagrams 

and  section. Hu and Wen ref.[4] reconstructed the 

attractor in pseudo space based on delay coordinates and use 

short-term predictability to identify its chaotic properties with 

the help of the correlation dimension and the largest Lyapunov 

exponent. Base on the numerical analysis done by Chu and 

Zhang, ref.[5,6] periodic, quasi-periodic and chaotic 

vibrational motion was observed when the rub-impact model 

being investigated was supported by oil-film bearings. The 

vibration that was due to the variation in the eccentricity 

parameter showed the importance of effective diagnosis of 

rotor-rub fault. Li et al. ref.[7] considered the nonlinear 

dynamics of a rub-impact rotor system that was supported by 

oil film bearings and elastic stator. Choi ref.[8] demonstrated 

different orbital configurations as the severity of rub increases. 

He also detected an impact every two revolutions, which 

indicated the presence of subharmonic response in the rotor 

system.  

Many of the nonlinear methods used to diagnose rotor-to-

stator rub in rotating machinery, as presented in the preceding 

brief review, are qualitative and therefore are not effective for 

fault diagnosis purposes. In the present paper, quantitative 

invariant measures based on the theory of chaos are exploited 

for the assessment of rotor-to-stator rub severity in rotating 

machinery. The specific invariants utilized in this work are 

correlation dimension , largest Lyapunov exponent  and 

maximum approximate entropy . 

II. Theoretical Treatment 
The Jeffcott rotor, which is a simplified representation of 

rotating machinery, is the most widely utilized model for the 

study and understanding of rotor dynamics phenomena. The 

Jeffcott rotor is characterized by a single rigid disk that is 

mounted at the mid-span of a massless and flexible shaft, 

which in turn is supported by two identical infinitely stiff 

bearings. The motion of the bearing system can be described 

by the displacements x and y of the geometric center of disk. 

Considering the external forces acting on the rotor that are due 

to rotor-to-stator contact, rotor imbalance and gravity, the 

equations of motion of the rotor-bearing system can be 

expressed as 

 

 
  (1) 

 

m is the mass of the disk, c is the damping coefficient at the 

disk, k is the stiffness of the shaft, u is the eccentricity of the 

rotor’s center of mass,  is the angular speed of the rotor, g is 

the gravity constant, t is the time,  and  are the rotor-to-

stator contact forces in the X and Y- directions respectively. 

The contact forces between the rotor and the stator is modeled 

based on the Hertzian theory ref.[2,9] as shown in Fig. 1 

below,  

International Journal of Fluid Mechanics & Machinery– IJFMM 
Volume 1 : Issue 2        [ISSN 2374-1481] 

Publication Date : 25 June 2014 
 



 

26 

 

 

 
 

Fig. 1. Rotor-to-stator contact model  

where the normal contact force  is a function of the contact 

stiffness  and rotor penetration depth, e. The friction force 

, which acts perpendicular to the normal force, is a function 

of the normal force  and the Coulomb sliding friction 

coefficient between the rotor and stator, . The rotor-to-stator 

contact forces in the X and Y- directions are given in Equation 

(2), where the radial clearance between the rotor and stator is 

denoted by . 

 

 
   (2) 

 

where  

 

 
 

 
 

 
 

 
 

The direction of the friction force  is determined from the 

value of  by the following relationship 

 

    (3) 

 

, which is the velocity of the contact point between the rotor 

and stator, is given in Equation (4). It is obtained by adding 

the velocity of the center of the disk to the velocity of the 

contact point relative to the disk center. R in Equation (4) is 

the radius of the disk. 

 

     (4) 

III. Invariant Measures of Chaos 
There are several qualitative and quantitative invariant 

measures of chaos.  A brief description of the quantitative 

measures used in this work, namely the correlation dimension, 

largest Lyapunov exponent and maximum approximate entropy, are 

presented herein. A short exposition of the method of time delay used 

in the reconstruction of attractor, which is essential for the 

computation of these invariant measures, is also outlined.  
 

A.    Attractor Reconstruction in Pseudo-Space 

 

  The reconstruction of an attractor utilizes the time delay 

method, which requires only one variable in space to unveil 

the true dynamics of the system provided it is embedded in an 

equivalently large dimension where the attractor can 

potentially unfold itself to reveal the components of all other 

variables. Since knowledge of a system's dynamics in real-

world applications are not readily available, the dynamics of 

the original system cannot be easily constructed. The equation 

below proves that an attractor could be simply reconstructed 

with the acquaintance of the proper time delay  and 

embedding dimension m. 

 

   (5) 

 

 is the reconstructed state space attractor where the choice 

of  and m plays a very crucial role and is often the most 

important reason for errors ref.[11]. Thus, with the appropriate 

selection of both these quantities, the theorem above 

guarantees that the m-dimensional attractor would unravel 

itself without any intersections. 

 

B.    Proper Selection of m and  

 

  At low dimensions, the percentage of having self-interaction 

with spatially nearby points on the attractor is rather high and 

therefore should be avoided. Sufficiently higher embedding 

dimensions exhibit real neighbors only due to the system's 

dynamics. Consequently, the threshold value m is chosen 

when the false nearest neighbor percentage drops to zero as 

shown in Fig. 2(a). This method is also known as the false 

nearest neighbor method ref.[12].  

 One of the methods for the selection of  is the average 

mutual information that was first described by Fraser and 

Swinney ref.[13]. The selection of the time delay  with too 

small of a delay would produce an attractor that is stretched 

along its diagonal which displays a phenomenon called 

redundancy. On the other hand, if the chosen  is too large, it 

would present irrelevance due to successively delay 

coordinates being causally unrelated ref.[14]. Consequently, 

the threshold value for the proper choice of  should give the 

coordinates more independence from each other but 

nevertheless still preserving the systems dynamic information. 
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A good estimate of  would be the first minimum point of the 

average mutual information graph as plotted in Fig. 2(b). 

 

C.    Correlation Dimension,  

 

  Grassberger and Procaccia [15] proposed the correlation 

integral as a new way to estimate the dimensions of an 

attractor, Equation (6). 

 

 (6) 

 

N is the number of data points used,  is the Heaviside 

function for which  for  and  for ,  

and  are points between two reconstructed vectors and r is 

the distance parameter. It is assumed that for small r, C(r) 

behaves as follows, 

 

     (7) 

 

 is referred to as the correlation dimension. In order to 

compute the correlation dimension, a plot of 

 must first be obtained. The slope of a 

suitable scaling region or interval in this plot represents the 

correlation dimension . 

 

D.    Largest Lyapunov Exponent,  

 

  Another widely used qualitative measure of chaos is the 

Lyapunov exponent. It has been proven that a system is 

chaotic if at least one of its Lyapunov exponents is positive; 

there are as many Lyapunov exponents as there are dimension 

governing the system. The algorithm for the computation of 

the largest Lyapunov exponent used in this work was proposed 

by Rosenstein et al. ref.[16].  This algorithm is conceptually 

slightly different from the well know Wolf algorithm ref.[17]. 

Rosenstein’s method is primarily based on Sato’s ref.[18] 

work and is shown in a simplified equation below. 

 

    (8) 

 

 is the current separation distance after each time step. 

The is equal to  that represent the 

mean logarithmic divergence for all pairs of nearest neighbor 

over time. Equation (8) characterizes an approximate set of 

parallel lines whose slope is that of . 

 

E. Maximum Approximate Entropy,  

 

  The approximate entropy, ApEn, was first proposed in the 

early nineties by Pincus ref.[19]. It measures the system's 

complexity by quantifying how regular the measured time 

series is. The idea of this measure is simple, given a time-

series with N data points sampled at a constant rate, a 

successive number of  vectors are produced where 

each vector comprise of m sequential vectors; m here being the 

embedding dimension. Each vector created in turn acts as a 

reference or a template vector for comparison with all other 

vectors in the time series including itself. Equation (9) was 

used to compute the ApEn value. 

 

  (9) 

 

Input parameters m and r must be known before hand to 

compute ApEn. Embedding dimension m can be obtained from 

the false nearest neighbor method ref.[12, 20, 21] and r from 

the maxima of the plotted r vs. ApEn graph ref.[20]. In order 

to accurately compute the system’s dynamic complexity, the 

maximum value of r at which  is maximum is 

selected, as opposed to just choosing a specific value from a 

certain range, for example , as recommended 

in some previous work ref.[19,21]. 

 
(a) 

 
(b) 
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Fig. 2. (a) False nearest neighbor first zero crossing (indicated by the red 

mark), m = 5, and (b) average mutual information first minimum (indicated by 

the red mark), for a response at  in the X-direction 

 

IV. Numerical Results and 
Discussion 

After the text edit has been completed, the paper is ready for 

the template. Duplicate the template file by using the Save As 

command, and use the naming convention prescribed by your 

conference for the name of your paper. In this newly created 

file, highlight all of the contents and import your prepared text 

file. You are now ready to style your paper; use the scroll 

down window on the left of the MS Word Formatting toolbar.  

Effective diagnosis of rotor-to-stator rub in rotating machinery 

can be rather difficult at times with the use of traditional 

methods such as Fast Fourier Transform (FFT), time 

frequency analysis or even nonlinear qualitative methods such 

as  sections and bifurcation diagrams. This is 

predominantly due to the strong chaotic nature of the vibration 

response. With the use of invariants such as correlation 

dimension , largest Lyapunov exponent  and maximum 

approximate entropy , however, the assessment of 

the severity of rub can be made quantitatively. 

  Numerical simulation of the rotor system was undertaken 

using MATLAB software package, which employed the 

continuous solver based on the Runge-Kutta of order 4 method 

with a constant time step of 0.0001. The parameters chosen for 

the numerical simulation were m = 1.715 kg,  = 750 rad/s, c 

= 268 Ns/m,  = 0.0002 m, R = 0.06 m, k = 115969 N/m,  

= 2319380 N/m,  = 0.3, and g = 9.81 m/ . The severity of 

the rotor-rub is based on the rotor’s imbalance, u (m) where it 

was increased from 0.00008 to 0.00011 with 0.00001 

increments, divided by the rotor-to-stator clearance of  = 

0.0002m. Therefore, the non-dimensional values of rub 

severity ( / ) in increasing order were 0.40, 0.45, 0.50 and 

0.55 as presented in Table 1. 

  Sets of 8192 data points were obtained from the numerical 

simulation for each rub severity parameter. These data points, 

which represented the response of the rotor in both X- and Y-

directions, were obtained after removing the transients. The 

reconstruction of the attractor was independently undertaken 

for the data in both the both X- and Y-directions. The time 

delay and embedding dimension of each set of data were 

computed using the average mutual information and false 

nearest neighbor methods, respectively. Examples of the time 

delay and embedding dimension obtained using these methods 

for the data in the X-direction with / =0.50 are shown in 

Fig. 2.  The values of the time delay and embedding 

dimension were then use in subsequent computation of 

correlation dimension, largest Lyapunov exponent and 

approximate entropy. Using the values of time delay and 

embedding dimension of Fig. 2, the correlation dimension, 

largest Lyapunov exponent and approximate entropy were 

computed and the results are presented in Fig. 3. 

  The results for all values of rub severity investigated in this 

work are presented in Table 1.  It is seen that when rub 

severity increased from 0.45 to 0.55, the correlation 

dimensions computed based on the vibration data in the X-

direction increased significantly from value of 1.813, 

corresponding to / =0.45, to value of 3.187, 

corresponding to / =0.55. The same trend was observed for 

the correlation dimensions computed based on the vibration 

data in the Y-direction; the correlation dimension for the case 

of / =0.40, 1.903, was seen to increase to  2.389 

as the rub severity increased to / =0.55. These results 

showed that the correlation dimension could be used as a 

quantitative measure to assess the severity of rotor-to-stator 

rub in rotating machinery.  

  Table 1 also presents the largest Lyapunov exponent for each 

time-series data. Similar trend that was seen for the correlation 

dimension with the increase in the severity of rotor-to-stator 

rub was also observed for the largest Lyapunov exponent . 

For the vibration data in the X-direction, as the severity of the 

rotor-to-stator rub increased from u/  = 0.40 to u/  = 0.55, 

the largest Lyapunov exponent was also found to increase 

from  0.172 to  0.6033. The same trend was 

generally observed for the vibration data in the Y-direction 

where the largest Lyaounov exponent was seen to increase 

from  0.2075 to  0.4284 as the severity of the rotor-

to-stator rub increased from u/  = 0.45 to u/  = 0.55. The 

positive values of the largest Lyapunov exponents also 

ascertained that the response of the rotor subjected to rub was 

indeed chaotic.  These values provided further insight into the 

rotor system's dynamic properties where nearby trajectories 

diverge exponentially even after only several iterations.  This 

consequently conforms to the fact that chaotic systems like the 

one examined in this work is indeed sensitive to initial 

conditions. 

  The maximum approximate entropy  values 

computed for all values of rub severity are shown in Table 1. 

The  was seen to increase with the increase in the 

severity of rub.  For the vibration data in the X-direction, 

 = 0.1443, corresponding to u/  = 0.40 increased to 

 = 0.3615 when u/  was increased to 0.55. Similar 

trend of linear increments were also seen in the Y-direction 

vibration data where the approximate entropy values increased 

from  = 0.2932 to  = 0.3561 as rub severity 

was increased from u/  = 0.40 to u/  = 0.55. Since a larger 

value of the maximum approximate entropy implies more 

irregularity or disorder in the time-series data, the results for 

the  presented in Table 1 point to the fact that the 

response of the rotor system subjected to rub was getting 

increasingly complex as the severity of rub increased. The 

clear trend of increasing values of approximate entropy with 

the increase in the severity of rub in the rotor system 

demonstrates the potential of this invariant measure as a 

diagnostic tool for rub related faults in rotating machinery. 
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TABLE 1 

COMPARISON OF THE VALUES OF CORRELATION DIMENSION, LARGEST 

LYAPUNOV EXPONENT AND APPROXIMATE ENTROPY WITH INCREASING 

RATIO OF u/  

Axis 

Rub 

Severity 

(u/ ) 

Correlation 

Dimension 

( ) 

Largest 

Lyapunov 
Exponent 

( ) 

Approximate 

Entropy 

( ) 

X 

0.40 1.866 0.1721 0.1443 

0.45 1.813 0.2285 0.2275 

0.50 2.586 0.2667 0.2852 

0.55 3.187 0.6033 0.3615 

Y 

0.40 1.903 0.2855 0.2932 

0.45 2.021 0.2075 0.3082 

0.50 2.203 0.3254 0.3280 

0.55 2.389 0.4284 0.3561 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 3. (a) Correlation dimension with the outline indicating the scaling 

region of , (b) largest Lyapunov Exponent with the outline 
indicating the scaling region of , (c) approximate entropy for 

maximum r at  for a response at . 

V. Conclusions 
Using vibration response data obtained from the numerical 

simulation of the Jeffcott rotor subjected to rotor-to-stator rub, 

this work has shown the effectiveness of employing some 

quantitative invariant measures of chaos to diagnose the 

severity of rub in rotating machinery. The specific invariant 

measures utilized in this work were correlation dimension , 

largest Lyapunov exponent  and approximate entropy 

. Due to the chaotic nature of the rotor response 

when subjected to rotor-to-stator rub, the invariant measures 

used in this work were able to capture the increasing 

complexity of the rotor response as the severity of rub 

increased. Such strong correlation between rub severity and 

the invariant measures of chaos seen in this work would not 

have been attained if linear quantitative measures such as root-

mean-square or peak amplitudes had been used instead. This 

work has demonstrated the potential of using some invariant 

measures of chaos for the diagnosis of rub related faults in 

rotating machinery.  Implementation of these methods in 

practical rotating machinery is expected to reduce unplanned 

outages and their associated economic repercussions.  
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