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Abstract— In the recent decades metaheuristic search techniques 

have been widely employed for developing structural design 

optimization algorithms. Amongst these techniques are genetic 

algorithms, simulated annealing, evolution strategies, particle 

swarm optimization, tabu search, ant colony optimization, 

harmony search, big bang-big crunch, and bat-inspired search. 

The main concern of the study is to evaluate the performance of 

aforementioned nine techniques in discrete sizing optimization of 

structural systems. The optimization algorithms, which are 

implemented in an unbiased coding platform, are evaluated and 

compared in terms of their solution accuracies and reliabilities 

using a real size structural design instance. Here, the design 

criteria imposed by AISC-ASD (Allowable Stress Design Code of 

American Institute of Steel Construction) are considered in the 

course of optimization. The study provides general guidelines 

about the efficiency of investigated algorithms in practical 

structural optimization applications. 

Keywords—structural optimization, discrete optimization, 

optimum sizing, metaheuristics 

I.  Introduction  
 

The optimization has always been an inseparable component 

of structural design. This fact has resulted in development of 

numerous optimization techniques in the past few decades to 

achieve robust and reliable design tools for dealing with 

complicated structural optimization problems. One main 

category of structural optimization problems is referred to as 

optimum design of steel skeletal structures.  
Despite the fact that numerous optimization techniques in 

the literature have been implemented until now to optimize 
steel structures, the research on the subject matter is still on 
the rise, where the ongoing studies are mostly centered around 
finding algorithms ideal for practical applications. In general, 
the optimum design of a steel skeletal structure is an attempt 
to find the best combination of design variables that results in 
a minimum weight or cost design of the structure. Meanwhile, 
for practical applications the optimum design should satisfy a 
set of predefined constraints imposed according to a given 
code of practice.  
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Mathematical programming [1] and optimality criteria [2] 
techniques that have found a vast amount of applications in the 
past are now conceived as traditional techniques of structural 
optimization. The drawbacks of these techniques (such as their 
gradient based formulations and inefficiency in handling 
discrete design variables) have led to an increasing tendency 
towards non-traditional stochastic search algorithms or the so-
called metaheuristics. Typically, metaheuristic techniques 
borrow their working principles from natural phenomena [3], 
and follow non-deterministic search strategies in locating the 
optimum solutions. A sound reputation of metaheuristics in 
structural optimization can be attributed to their competitive 
solutions, robust performances, ease of implementation/use, 
independency to gradient information, and capability of 
handling both continuous and discrete design variables. The 
state-of-the-art reviews of metaheuristic algorithms 
considering their applications in structural optimization 
instances are outlined in [4, 5]. 

The present study covers the performance evaluation of 
nine metaheuristic search techniques; namely simulated 
annealing (SA) [6] , evolution strategies (ESs) [7], particle 
swarm optimization (PSO) [8], tabu search method (TS) [9], 
ant colony optimization (ACO) [10], harmony search method 
(HS) [11], genetic algorithm (GA) [12], big bang-big crunch 
(BB-BC) [13], and bat-inspired search (BI) [14] in structural 
design optimization. In the paper the discrete sizing 
optimization problem is formulated, where design limitations 
are imposed according to AISC-ASD [15]. A 354-bar steel 
braced dome is considered as a practical design optimization 
instance, where the structural members are sized for minimum 
weight using 37 standard circular hollow sections. Through 
conducting three independent runs with each of the 
abovementioned nine optimization techniques efficiency of the 
techniques in locating the optimum solution are compared, and 
the obtained results are discussed in details.  

II. Statement of the design 
optimization problem 

 
Typically in practical design optimization of truss 

structures the aim is to find a minimum cost or weight design 
by selecting the cross-sectional areas of structural members 
from a table of available sections such that the final design 
satisfies strength and serviceability requirements determined 
by technical standards. For a given truss structure composed of 
Nm members grouped into Nd sizing design variables, the 
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optimization problem can be formulated as follows. The 
objective is to find a vector of integer values I (Eq. 1) 
representing the sequence numbers of standard sections in a 
given section table, 

 

                         I
T
 = 

1 2[ , ,..., ]
dNI I I

                               
(1) 

 

 to generate a vector of cross-sectional areas A (Eq. 2) for 
Nm members of the structure, 

 

                     A
T
 = 

1 2[ , ,..., ]
mNA A A

   
                            (2) 

 

such that A minimizes the following weight objective 
function: 
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where W is the weight of the structure, ρm, Lm, Am are unit 
weight, length, and cross-sectional area of the m-th member, 
respectively. The design constraints consist of the limitations 
imposed on overall structural response and behavior of 
individual members according to AISC-ASD [15].  

III. Metaheuristic search 
techniques: an overview 

 
Metaheuristic algorithms are stochastic search techniques 

capable of providing acceptable solutions for complicated 
optimization problems in a computationally acceptable time. 
In general, these techniques employ particular metaheuristic 
search procedures developed based on a natural phenomenon. 
In the recent decades there has been a great tendency towards 
practical application of metaheuristics in the field of structural 
optimization. A short overview of abovementioned 
metaheuristics is provided here as outlined in [16]. 

SA optimization algorithm which is a well-known variant 

of metaheuristic search techniques, seeks for minimum energy 

states through an analogy based upon the physical annealing 

process. In this process, a solid initially at a high energy level 

is cooled down gradually to reach its minimum energy and 

thus to regain proper crystal structure with perfect lattices. The 

idea that this process can be simulated to solve optimization 

problems was pioneered independently by Kirkpatrick et al. 

[6] and Cerny [17], establishing a direct analogy between 

minimizing the energy level of a physical system and lowering 

the cost of an objective function. Successful applications of 

SA in discrete structural optimization problems have been 

reported in a number of early works in the literature, such as 

Refs. [18-20]. The enhancement of the technique is 

accomplished in some recent publications, such as Refs. [21, 

22] for enhancing its search capability in complex design 

applications.        

ESs are another promising representative of evolutionary 

algorithms. The fundamentals of the technique were originally 

laid in the pioneering studies of Rechenberg [23]. They were 

first developed in a rather simple form known as 

ES)11(   that implements on the basis of two designs; a 

parent and an offspring individual. Today, the modern variants 

of ESs are accepted as ES)(    and ES),(  , 

which were developed by Schwefel [24]. Both variants 

employ design populations consisting of   parent and   

offspring individuals, and are intended to carry out a self-

adaptive search in continuous design spaces. The extensions of 

these variants to solve discrete optimization problems were put 

forward in Refs. [25-27]. A literature survey turns up several 

publications reporting a very successful use of this method in 

discrete optimum design of structural systems [28, 29].   

PSO is a population based metaheuristic search technique 

inspired by social behavior of bird flocking or fish schooling. 

This behavior is concerned with grouping by social forces that 

depend on both the memory of each individual as well as the 

knowledge gained by the swarm [8, 30]. The procedure 

involves a number of particles which represent the swarm 

being initialized randomly in the search space of an objective 

function. Each particle in the swarm represents a candidate 

solution of the optimum design problem. The particles fly 

through the search space and their positions are updated using 

the current position, a velocity vector and a time step. The 

successful applications of this technique have also been 

reported in the field of structural optimization, especially in 

size/shape optimum design of skeletal structures. Amongst 

some recent applications are Perez and Behdinan [31], He et 

al. [32] and Fourie and Groenwold [33].  

TS technique is another metaheuristic method, which was 

first developed by Glover [9]. The method implements a 

simple yet an efficient iterative based local search strategy for 

solving combinatorial optimization problems. At each step a 

number of candidate solutions are sampled in the close 

vicinity of the current design by perturbing a single design 

variable called a move. The best candidate is chosen and 

replaced with the current design even if it offers a non-

improving solution, and the move leading to this candidate is 

recognized as a successful move. To protect the search against 

cycling within the same subset of solutions, information 

regarding most recently visited solutions is collected in a list 

referred to as tabu list. A candidate is allowed to replace the 

current design provided that its move is not in tabu list; 

otherwise the search is preceded with the current solution. The 

method has been mostly employed for weight minimization of 

structural systems in the literature, such as Bland [34]. 

ACO algorithm is inspired from the way that ant colonies 

find the shortest route between the food source and their nest. 

Ants being completely blind individuals can successfully 
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discover as a colony the shortest path between their nest and 

the food source. They manage this through their characteristic 

of employing a volatile substance called pheromone. When 

finding food, the ants deposit pheromones on the ground while 

traveling, which is used by other ants in the colony as a guide 

to find the food sources. Ant colony optimization was 

developed by Colorni et al. [10] and Dorigo [35] and used in 

the solution of traveling salesman problem. The optimum 

structural design applications of the technique have been 

presented in Camp et al. [36], Aydoğdu and Saka [37]. 

HS method is based on natural musical performance 

processes that occur when a musician searches for a better 

state of harmony. The resemblance, for example between jazz 

improvisation that seeks to find musically pleasing harmony 

and the optimization is that the optimum design process seeks 

to find the optimum solution as determined by the objective 

function. The pitch of each musical instrument determines the 

aesthetic quality just as the objective function is determined by 

the set of values assigned to each design variable. The recent 

applications of HS algorithm in structural optimization reveal 

that it is a very powerful technique for relatively small-to-

medium scale discrete optimization problems [38, 39]. An 

enhancement of the technique is proposed in Hasançebi et al. 

[40] for larger scale problems, where an adaptive change of its 

parameters is facilitated for establishing the most 

advantageous search automatically by the algorithm.  

The most well known stream of evolutionary algorithms is 

GA, which have been initially pioneered by Holland [41]. 

These algorithms are based on the evolutionary ideas of 

natural selection and genetics mechanism. The first application 

of the technique in optimum structural design is presented by 

Goldberg and Samtani [42], where the weight minimization of 

the classical 10-bar truss is accomplished with GAs. Today, 

many variations and extensions of the technique have been 

proposed, and successful applications of the technique are 

available in a vast amount of discrete and continuous 

optimization literature [43-45]. In the present study, a genetic 

algorithm with standard components referred to as simple 

genetic algorithm (SGA) is implemented due to its generality 

and wide acceptability.  

BB-BC optimization method has first appeared in Erol 

and Eksin’s study [13]. It is emerged from the big bang and 

big crunch theories of the universe evolution. As its name 

implies, the method is based on the continuous application of 

two successive stages, namely big bang and big crunch phases. 

During big bang phase, new solution candidates are randomly 

generated around a point called center of mass. This point is 

recalculated and updated every time in the big crunch phase 

with respect to the solution candidates generated. The first 

application of the BB-BC for optimum design of skeletal 

structures was carried out by Camp [46]. There are many 

applications of the BB-BC method in the field of structural 

optimization. A recent performance evaluation of the BB-BC 

algorithm was carried out by Kazemzadeh Azad et al. [47], 

where efficiency of the method in benchmark engineering 

optimization problems is investigated. 

One latest addition to metaheuristic algorithms is the BI 

search, which was recently proposed in Yang [14]. The bath-

inspired search makes use of echolocation behavior of bats in 

searching for the optimum. The efficiency of the BI algorithm 

was validated and compared with other existing algorithms 

using some single and multi-objective standard functions of 

unconstrained optimization in Yang [14] and Yang [48], 

respectively. Besides, the performance of the technique in 

benchmark problems of constrained engineering optimization 

was investigated in Yang and Gandomi [49] and Gandomi et 

al.[50]. The results obtained in these studies have clearly 

documented the superiority of the bat-inspired search over 

other techniques. Recently, the method is refined and adapted 

for structural optimization in Hasançebi et al. [51].  

It should be underlined that there is no a unique 

formulation or a standardized algorithm used to implement 

any of the metaheuristic search techniques mentioned above. 

Rather, each technique has been devised in various 

algorithmic forms and has numerous extensions and 

modifications. In this study the algorithms to implement the 

techniques are selected on the basis of their generalities and 

reported performances in the published literature. The 

implementation specifics and detailed outlines of these 

algorithms can be found in Hasançebi et al. [51, 52] with 

complete parameter settings and enhancements proposed to 

accelerate their performances. The performance evaluation of 

the considered optimization techniques is carried out in the 

following section. 

IV. Design example 
 

The design example considered in this study is a 354-bar 
braced dome truss (Figure 1) with a 40 m (131.23 ft) diameter 
designed for covering the top of an auditorium at an elevation 
of 10 m (32.8 ft). The structure has a height of 8.28 m (27.17 
ft), and consists of 127 joints and 354 members. The 354 
members are grouped into 22 independent sizing variables 
(Figure 1), which are selected from the entire set of 37 
standard circular hollow sections. The dome is subjected to the 
following three load cases considering various combinations 
of dead (D), snow (S) and wind (W) loads computed 
according to the specifications of ASCE (1998): (i) D + S, (ii) 
D + S +W (with negative internal pressure), and (iii) D + S 
+W (with positive internal pressure). It is important to note 
that the load cases resulting from unbalanced snow loads are 
disregarded in the study to avoid excessive computational 
burden. The complete details of load cases and related 
calculations can be found in Hasançebi et al. [52]. The stress 
and stability constraints of the members are computed 
according to the specifications of AISC-ASD [15]. The 
displacements of all nodes are limited to 11.1 cm (4.37 in.) in 
any direction. 

The minimum weights obtained by each technique for 354-
member braced dome is given in Table 1. For this structure, 
SA, ESs, PSO, improved BB-BC, and BI techniques give the 
least weight, which is 32574.9 lb. 
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Figure 1. 354-member braced truss dome (a) 3-D 

view (b) top view (c) side view 

TABLE I.  COMPARISON OF SOLUTIONS FOR 354-BAR BRACED DOME  

Sizing  

variables 

Optimal cross sectional areas (in2) 

SA 

 

ESs 

 

PSO 

 

ACO 

 

TS 

 

HS 

 

SGA 

 

BB-BC 

 
BI 

Improved Standard 

1 1.07 1.07 1.07 1.07 1.07 1.07 1.48 1.07 1.07 1.07 

2 3.17 3.17 3.17 3.17 3.17 3.17 2.68 3.17 3.17 3.17 

3 2.23 2.23 2.23 2.23 2.68 2.23 4.3 2.23 2.68 2.23 

4 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.68 4.3 2.68 

5 2.23 2.23 2.23 2.23 2.68 2.23 2.23 2.23 2.23 2.23 

6 2.23 2.23 2.23 2.23 2.23 2.25 2.23 2.23 2.68 2.23 

7 2.23 2.23 2.23 2.23 2.68 2.23 2.23 2.23 2.68 2.23 

8 2.23 2.23 2.23 2.23 2.68 2.68 2.23 2.23 4.3 2.23 

9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

10 2.23 2.23 2.23 2.23 2.23 2.25 2.25 2.23 2.68 2.23 

11 1.7 1.7 1.7 2.66 1.7 2.25 2.66 1.7 1.7 1.7 

12 1.7 1.7 1.7 2.23 1.7 1.7 2.23 1.7 2.68 1.7 

13 1.7 1.7 1.7 1.7 1.7 1.7 2.23 1.7 2.68 1.7 

14 1.7 1.7 1.7 1.7 1.7 2.23 1.7 1.7 1.7 1.7 

15 1.7 1.7 1.7 1.7 1.7 1.7 2.25 1.7 1.7 1.7 

16 1.7 1.7 1.7 1.7 2.68 1.7 1.7 1.7 2.68 1.7 

17 1.48 1.48 1.48 1.48 1.7 2.66 1.7 1.48 1.48 1.48 

18 1.48 1.48 1.48 2.68 1.48 3.02 3.17 1.48 1.48 1.48 

19 1.07 1.07 1.07 1.07 1.07 1.7 1.48 1.07 2.68 1.07 

20 1.07 1.07 1.07 1.07 1.07 1.7 1.48 1.07 2.68 1.07 

21 1.07 1.07 1.07 1.07 1.07 1.7 1.48 1.07 1.48 1.07 

22 1.07 1.07 1.07 1.48 1.07 1.07 1.7 1.07 1.48 1.07 

Weight, lb 

(kg) 

32574.9 

(14775.7) 

32574.9 

(14775.7) 

32574.9 

(14775.7) 

33557.5 

(15221.4) 

35370.1 

(16043.6) 

34944.3 

(15850.5) 

36343.3 

(16485) 

32574.9 

(14775.7) 

41413.5 

(18784.8) 

32574.9 

(14775.7) 

 

This design is considered to be the optimum solution of the 
problem. However, relatively higher design weights have been 
attained for the structure with other metaheuristic algorithms; 
namely 33557.5 lb by ACO, 34944.3 lb by HS, 35370.1 lb by 
TS, 36343.3 lb by SGA, and 41413.5 lb by standard BB-BC 

algorithm. Regarding the attained results, SA, ESs, PSO, 
improved BB-BC, and BI techniques can be considered as the 
most successful algorithms in locating the optimum. However, 
the standard BB-BC algorithm demonstrates a poor 
performance, and is not a suitable technique for tackling 
discrete sizing optimization instances. Relatively better 
performances are observed using SGA, TS, HS and ACO 
algorithms, however, none of these techniques were capable of 
locating the optimum solution. 

V. Conclusion 
 

Metaheuristic based design optimization is quite sensitive 

to a large set of issues that result from decisions and 

assumptions made when an optimization model is established 

for a problem. Amongst these parameters are (i) the number 

and nature of design variables used, (ii) discrete sets for design 

variables, (iii) the choice of starting solutions, (iv) the number 

of design cycles, (v) the method of handling infeasible 

solutions, and (vi) the number of independent runs performed. 

An objective performance evaluation of stochastic 

optimization techniques requires that all these parameters are 

kept identical from one method to another. This fact is 

observed in the application of the nine different metaheuristic 

techniques considered in this study. Regarding the obtained 

results it can be deduced that amongst all the metaheuristic 

search techniques investigated here, SA, ESs, PSO, improved 

BB-BC, and BI techniques are the most powerful ones for 

structural optimization applications. However, the standard 

BB-BC algorithm demonstrates a poor performance, and was 

not capable of locating a reasonable solution for the 

investigated discrete sizing optimization instance. Relatively 

better performances are observed using SGA, TS, HS and 

ACO algorithms, however, none of these techniques were 

capable of locating the optimum solution. It is worth 

mentioning that all the investigated optimization algorithms 

are indeed problem dependent, and no strict conclusion can be 

reached with regard to their performances using only a single 

design instance. However, the results provide some level of 

general guidelines for users of the metaheuristic algorithms.  
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