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Abstract  

A dynamic analysis of axially loaded Timoshenko 

beams with intermediate fixities is presented. The 

underwater part of a craft is modeled as a flexible 

beam, which rises out and slams against the 

water at a large vertical velocity, causing highly 

localized hydrodynamic impact pressure moving 

at high velocities across the beam, setting it into 

high-frequency vibrations. The beam natural 

frequencies depend on the slenderness ratio, axial 

load, and end fixities. Increasing the axial tension 

and/or end fixity increases the natural 

frequencies, which are generated through Eigen 

analysis. 

Next, normal mode summation is used to analyze 

the impact-induced vibration response, which is 

generated for various impact speeds, deadrise 

angles, end fixities, axial loads, and slenderness 

ratios of the beam. A parametric study is done to 

predict the maximum dynamic stresses on the 

structure. The pressure is assumed to act at the 

equilibrium position. The aim is to study the 

dynamic stress configurations and draw 

conclusions leading to sound structural designs. 

 

Keywords Slamming, Impact loads, Beam 

vibration, Dynamic stresses, Normal mode 

analysis. 

 

1. Introduction 

 
As conventional ship design gives way to non-

conventional high performance marine vehicles, structural 

analysis of high speed crafts becomes the cornerstone of a 

sound structural design. Crafts like planning crafts, 

hydrofoil crafts, catamarans, surface-effect ships (SES) 

are subject to various dynamic loads during their 

operation. Dynamic lift due to planing leads to emergence 

of the craft above its zero-speed waterline. This changed 

attitude greatly changes the seakeeping and dynamic 

effects of the craft (slamming, deck-wetness, sea-

sickness, etc). Changing forward speeds of the craft and 

sea states change the dynamic lift produced, leading to a 

certain probability of slam, which is the product of the 

probability of forefoot emergence and the probability of 

exceedance of the vertical velocity over a threshold 

velocity.  

Bokaian (1990) studied the free vibration of axially 

loaded Timoshenko beams, with classical end conditions. 

Lin (1994) studied the vibration of simply-supported 

Timoshenko beams to moving point loads, using Finite 

Element Analysis.  This study was limited to a point load, 

and a single boundary condition of the beam. Axial 

tension was also absent. Chang (1994) studied 

Timoshenko beams on elastic foundations and axial loads, 

but the external force was limited to point loads, varying 

randomly in time. The end conditions of the beam 

remained simply-supported. Farchaly and Shebl (1995) 

studied the frequencies and modeshapes of Timoshenko 

beams with intermediate fixities and elastic end supports. 

This study was limited to free vibration only. Wang 

(1997) studied the vibration of multi-span Timoshenko 

beams to point moving loads, using the normal mode 

summation method. The forced vibration was 

comparatively done for both Euler-Bernoulli and 

Timoshenko beams.  Majkut (2009) solved the vibration 

of Timoshenko beams by the Green’s function method, 

since the forcing was a Dirac Delta function in space. The 

natural frequencies and modeshapes of a Timoshenko 

beam have been compared to those of a Euler-Bernoulli 

beam, for various classical end conditions.  

None of the above has explored the vibratory 

dynamics of a beam under loads similar to the 

hydrodynamic impact configurations.  

In this work, the underwater part of the craft is 

modeled as an axially loaded Timoshenko beam, with 

intermediate end fixities. First, the free vibration analysis 

has been done by the Eigen Value method, in order to 

generate the  natural frequencies and modeshapes.  The 
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free vibration frequencies, with and without axial tension, 

have been tabulated for various end fixities. The beam is 

then subjected to two configurations of the stretching 

hydrodynamic transient load : (a) uniform stretching load 

of unit magnitude, and (b) Impact load configuration at 

various deadrise angles. The dynamic analysis has been 

done by the normal mode summation method, while the 

static analysis has been done by the Galerkin’s method. 

The maximum dynamic overshoot over the maximum 

static deflection generates the dynamic loading factor 

(DLF) for various speeds of the transient load. The 

wetting time of the plate has been non-dimensionalized by 

the first natural frequency of the beam, to generate the 

non-dimensional wetting time τ. The DLF vs. τ 

characteristics have been generated for the Timoshenko 

beam with several different end fixities, with and without 

tension, and some structural damping. The range of τ, for 

which the beam shows pronounced dynamic behavior has 

been established. This leads to insights leading to sound 

structural recommendations.  

 

2. Problem formulation 
The underwater part of the vessel (Fig.1) is modeled 

as a lightly damped Timoshenko beam, at a deadrise angle 

of β degrees to the horizontal, which impacts against the 

water surface as a vertical velocity V m/sec; which is the 

velocity of the relative bow motion, i.e. the net velocity of 

heave, pitch, and wave elevation at that location, 

including the phase differences. The beam may be axially 

loaded either in compression or in tension. The end 

fixities vary from 0% (Simply-supported beam) to 100% 

(Clamped-clamped beam), depending on the quality of the 

welding. The hydrodynamic impact causes a very high 

magnitude, localized, transient pressure to move across 

the length of the beam; setting it into high-frequency 

vibrations, causing bending stress and shear stress waves 

along the length of the beam. The length varies along x 

(metres), and the time is denoted as t (seconds). The x=0 

and x=L locations typically correspond to the longitudinal 

stiffeners of the craft. The total out-out-plane transverse 

flexural deflection of the beam is denoted as z(x,t), 

varying as a function of space and time. The structural 

damping is assumed to be zero, since marine structures 

are usually very lightly damped. The maximum deflection 

is assumed to occur early in the impact sequence, and 

hence the analysis is done for dry vibrations, ignoring the 

fluid inertia (added masses) of the surrounding water. The 

wetdeck vibrations of a catamaran, after such an impact, 

are almost always dry vibrations. The high frequency 

limit of structural oscillations leads to a nearly calm water 

free-surface condition (rigid lid condition). The radiation 

damping is considered to be zero.  

 

 

 

 
                                                V                    d(t)                  V 

                     β                                                        

                                             plate                         x             

                                                                                    β  

Fig. 1      Cross-sectional slamming model of a typical 

high-speed craft. 

 
The moving force f(x,t) N/m is modeled as a function 

of space and time. Two forcing configurations are used as 

follows : 

(1) Uniform stretching load configuration (Single 

sweep). 

In this benchmark forcing case, a force of unit 

magnitude F(x,t) = 1 N/m stretches across the length L of 

the beam at different speeds c, such that the wetting time 

is L/c, as shown in Fig.2. This configuration models the 

progressive wetting of the beam upon entering the water. 

The wetting time is non-dimensionalized by the first 

natural period of the beam. The non-D splash time is 

defined as 





2

1n

c

L
 . This combines the two time-scales 

of the problem into one.  

 

 

 

 

 
Fig.2  Uniform stretching load of unit magnitude. 

 

 

 

 

 

 

 

 

 

 

 
Fig.3  Hydrodynamic impact load (non-D). 

 

(2) Impact force configuration of the impact 

force  
As shown in Fig.3, here the sweeping force rises to a 

peak value and drops to nearly zero. The keel pressure 

remains the same, while the force stretches across the 

beam at a speed .
sin2 

V
The wetting speed, the peak 

pressure, and the loading configuration, depend on the 

impact velocity V and the deadrise angle β. The smaller 

the deadrise angle, the greater is the peak pressure, more 

2

2

)(tan

2




V

P

w

impact
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concentrated is the forcing configuration, and faster is the 

wetting.  

 
Table 1 : Impact pressure characteristics for  V = 10 m/sec 

Deadrise angle 

V

td


)(

 

spT  

stag

peak

P

P

 
stag

keel

P

P

 

1 degree 90.00457 0.11 8100.823 180.0091 

5 degrees 18.02287 0.56 324.8237 36.04573 

15 degrees 6.069091 1.65 36.83387 12.13818 

30 degrees 3.141593 3.18 9.869604 6.283185 

The jet head is given as 




tan2
)(

Vt
td  , the jet head 

velocity is 




tan2
)(

V
td 


. The constant keel pressure is 

given as 


 )(),0( tdVtP water  and the transient peak 

pressure is expressed as 

2

)(
2













tdP water
peak


, which 

are the two constants of the stretching  load. The 

stagnation pressure of the vertical impact velocity is given 

as 2

2
VP water

stagnation


 . Including the rise-up of the 

water due to the impact, the wetting time is defined and 

non-dimensionalized by the fundamental natural period of 

the beam, as:  

.1
2

sin2
,

sin2 2,1
















dry

sp
V

L

V

L
T  

Table 1 shows above characteristics of the 

impact pressure at four different deadrise angles, at V = 

10m/sec. The pressure distribution, at any instant, is 

assumed to be a parabolic distribution, emulating the 

Wagner’s impact pressure model. With xw as the wetted 

length as a given instant of time, 

.
sin2

,
)(4

,
4

),(

22



Vt
x

PP

x
a

a

x
PtxP w

keelpeak

w
keel 


  

Repeated impacts cause cumulative deflections and 

stresses in the beam. The subsequent forcing 

configurations are assumed to act on the deformed beam. 

The duration between two consecutive slams is calculated 

through the probability if slamming. Forefoot emergence 

is the necessary condition for slam, and exceedance of the 

threshold vertical velocity is the sufficient condition. This 

threshold velocity differs for different deadrise angles.  

 

3. Analysis methodology 
The system of simultaneous governing differential 

equations of impact-induced undamped free vibration of 

an axially loaded Timoshenko beam, utilizing Newton’s 

second law, is given as follows : 

;
),(),(),(),(
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      Eq. 1(A,B) 

Eq.1(A) is a force balance equation, while 

Eq.1(B) is a moment balance equation, per unit length. 

The axial force N is positive for tensile force and negative 

for compressive force. Here, ),( txz is the deflection and 

),( tx is the bending slope, as functions of space and 

time. ρ is the density of the beam, A is the cross-sectional 

area of the beam, I is the second moment of area of the 

cross-sectional are of the beam about the horizontal 

neutral axis, E is the elastic modulus and G is the shear 

modulus of the material, and μ is the Timoshenko shear 

coefficient (=5/6 for a rectangular section). The shear 

deformation and rotary inertia are included in the beam 

analysis. The shear strain is assumed constant over a 

given cross-section.  

 

 

The four boundary conditions are expressed as: 
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The displacement is zero at the ends, while the bending 

moment at the end equals the restraining moment at the 

ends. The end fixities are modeled as torsional springs at 

the left and right ends, with torsional spring constants 

LK and RK . As these spring constants tend to zero, the 

end bending moments vanish and the beam approaches a 

simply supported beam. As these spring constant tend to 

infinity, the end slopes vanish and the beam approaches a 

clamped-clamped beam.  

 

3.1 Free Vibration 

The total deflection ),( txz and bending slope ),( tx  

are given as a superposition of the modeshapes (in space) 

and principal coordinates (in time). Here, )(xj is the j
th

 

beam modeshape, and )(xj is the j
th

 bending slope 

modeshape. The total deflection is a sum of (a) pure 

bending deflection, which is given by the Euler-Bernoulli 

beam theory, and (b) the shear deflection. The total slope 

is a sum of the pure bending slope and the shear 

deflection slope. They are respectively expressed as 

)()(),(
1

tqxtxz j
j

j




  and )()(),(
1

tqxtx j
j

j




  .  
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Separation of the variables leads to a fourth order 

equation in space, and a second order equation in time. 

Euler-Bernoulli beams generate a unique frequency 

parameter, corresponding to a single natural frequency. 

The process followed is similar to that given by Chang 

(1994). Timoshenko beams have a pair of frequency 

parameters associated with a unique natural frequency. 

Substitution of the boundary conditions leads to a 

transcendental equation, solved by the Newton-Raphson 

method to generate the pairs of frequency-parameters.  

 

3.2 Forced Vibration 
The system of simultaneous governing differential 

equations of impact-induced undamped forced vibration 

of an axially loaded Timoshenko beam, utilizing 

Newton’s second law, is given by Eq.2(A,B), as follows : 

  ;),(),(),(),(),( "'" txNztxFtxtxzAGtxzA 




  ).,(),(),(),( "' txEItxtxzAGtxI  


 

     Eq.2(A,B) 

3.2.1 Dynamic Analysis 
The shear deformation and rotary inertia are both 

included in the dynamic analysis. Using the modal 

expansion for the deflection and the bending slope, the 

system of equation is expressed as  
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Eq.3(A,B) 

Eq.3(A) is pre-multiplied by )(xk and integrated over 

the length L, to generate Eq.4(A). Eq.3(B) is pre-

multiplied by )(xk and integrated over the length L, to 

generate Eq.4(B).  
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The beam modeshapes are orthogonal to each other, and 

the beam-slope modeshapes are also orthogonal to each 

other. Writing it in the matrix form, the system of 

equations becomes : 

                

             043

21









qGKqGSqGSqGR

GFqGNqGSqGSqGCqGM
 

       Eq.4(A,B) 

Proportional structural damping is included, 

which manifests in the first equation above as the 

generalized damping     GMGKGC 2 , where δ is 

the damping ratio and   GMGK2 can be considered to 

be the modal critical damping. The physical structural 

damping has not been explicitly defined here. The 

combined equation is written as : 

           
    ,)()(

)()()()(

tGFtqGN

tqGKtqGStqGCtqGRGM






 
                 Eq.5 

where          .4321 GSGSGSGSGS   

The advantage of the normal mode summation is 

that the two coupled governing differential equations can 

be written as a single equation as a function of time.  Eq.5 

is solved simultaneously by the Euler-implicit-explicit 

time-integrator method to generate the principal 

coordinates as functions of time, which are then pre-

multiplied by the beam modes and slope modes to 

generate the deflection and bending slope respectively, as 

functions of space and time.  

 

3.2.2 Static Analysis 
Only the shear deformation gets included in the 

static analysis. The system of simultaneous governing 

differential equations of forced quasi-static deflection of 

an axially loaded Timoshenko beam, utilizing Newton’s 

second law, is given as follows 

:   ;0),(),(),(),( "'"  txNztxFtxtxzAG 

  .0),(),(),(),( '"'  txNztxEItxtxzAG 
    Eq.6 

Eliminating the pure bending slope ),( tx from the above 

system of coupled static equations, we 

get
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Let the static deflection be a weighted superposition of 

admissible functions (satisfying the boundary conditions), 

i.e. 



es

j
jjst xAtxz

mod

1

).(),(  Premultiplying Eq.6 by 

)(xk and integrating over the length, the weights jA  are 

determined, and the final static deflection is calculated at 

each time step.
 

 

4. Results. 

4.1 Free Vibration 
Starting with a classical-ended uniform Euler-

Bernoulli beam without any axial load, the first 

complication included is the variation of the end fixity. A 

simply supported beam has 0% fixity, while a clamped-

clamped beam has 100% fixity. The %fixity stands for the 

ratio of end tensile stresses developed in a beam, as 

compared to the end tensile stress developed for a 

clamped-clamped beam. Increasing the fixity increases 

the modeshape curvature (Fig.4) and the natural 

frequencies (Table 1) of the beam.  

 
Fig.3 Beam modeshapes for various end fixities. 

 
Table 2 : First 10 natural frequencies of Euler-Bernoulli beams 

with intermediate fixities. 

Fixity 

Modes 
0% 22% 40% 55% 70% 90% 100% 

1 3.1416 3.5768 3.8974 4.1557 4.3737 4.6141 4.7300 

2 6.2832 6.5466 6.8077 7.0682 7.3293 7.6682 7.8377 

3 9.4248 9.6127 9.8250 10.0657 10.3387 10.7463 10.9739 

4 12.5664 12.7120 12.8850 13.1053 13.3749 13.8283 14.1093 

5 15.7080 15.8267 15.9769 16.1718 16.4314 16.9148 17.2499 

6 18.8496 18.9497 19.0802 19.2561 19.5031 20.0053 20.3804 

7 21.9912 22.0778 22.1929 22.3528 22.5867 23.0994 23.5160 

8 25.1327 25.2090 25.3120 25.4582 25.6793 26.1969 26.6516 

9 28.2743 28.3425 28.4356 28.5700 28.7791 29.2974 29.7872 

10 31.1459 31.4775 31.5625 31.6869 31.8847 32.4013 32.9253 

 
Inclusion of axial loads changes the natural 

frequencies, without affecting the beam modeshapes. 

Tensile force increases the natural frequencies, while a 

compressive force reduces them, as shown in Table 3. 

Inclusion of shear deformation and rotary inertia reduced 

the natural frequencies, as shown in Table 4. 

 
Table 3 : First 5 natural frequencies of axially-loaded Euler-

Bernoulli beams with intermediate fixities. 

N = -0.8*Pcr Fixity 0% 22% 55% 70% 100% 

Mode 1 2.103 3.0391 3.8315 4.0882 4.4706 

 
2 5.9426 6.2487 6.8298 7.1106 7.6423 

 
3 9.2082 9.409 9.8875 10.1721 10.8238 

 
4 12.4064 12.5576 12.964 13.2409 13.9878 

 
5 15.5809 15.7025 16.0552 16.3196 17.1428 

N = Pcr Fixity 0% 22% 55% 70% 100% 

Mode 1 3.7355 4.0215 4.475 4.6641 4.9834 

 
2 6.6433 6.8695 7.3356 7.5771 8.0622 

 
3 9.6761 9.8504 10.2759 10.5362 11.1531 

 
4 12.7581 12.8974 13.2757 13.5369 14.257 

 
5 15.8626 15.9779 16.3141 16.5679 17.3699 

 
Table 4 : First 5 natural frequencies of axially loaded 

Timoshenko beams with intermediate fixities. 

N = 0 Fixity 0% Fixity 55% Fixity 100% 

Mode 1 3.1392 4.1523 4.7162 

Mode 2 6.2643 7.0465 7.8104 

Mode 3 9.3619 9.9979 10.893 

Mode 4 12.4196 12.9518 13.9321 

Mode 5 15.4272 15.8825 16.9187 

N = -0.8Pcr Fixity 0% Fixity 55% Fixity 100% 

Mode 1 2.0966 3.8259 4.4638 

Mode 2 5.9214 6.8051 7.6117 

Mode 3 9.1421 9.8161 10.7388 

Mode 4 12.2556 12.806 13.8055 

Mode 5 15.2951 15.7606 16.8107 

N = Pcr Fixity 0% Fixity 55% Fixity 100% 

Mode 1 3.7338 4.4733 4.981 

Mode 2 6.6264 7.3166 8.0384 

Mode 3 9.6164 10.2121 11.077 

Mode 4 12.6159 13.1273 14.0857 

Mode 5 15.5876 16.031 17.0508 
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4.2 Forced Vibration 
The first two modes are used to generate the total 

deflection of the beam, subject to two different 

configurations of the transient loads.  The mode-

summation method yields the following matrices for the 

generalized mass GM, generalized moment of inertia GR, 

generalized flexural stiffness GK, generalized shear 

stiffness GS, and generalized axial loads GN (Table 5 and 

table 6). 

 
Table 5 : GM, GR, GN for 2x2 modes. 

G 

M 
  

G 

R 
  

G 

N 
107  

 1 2  1 2  1 2 

1 1.8732 -0.0000 1 0.0040 -0.0000 1 -0.2353 0.1090 

2 -0.0000 2.0848 2 -0.0000 0.0075 2 0.1090 -0.2353 

Table 6 : GK, GS for 2x2 modes. 
GK   GS   

 1 2  1 2 

1 -0.2292*107 0.0000*107 1 0.4500*106 -0.0001*106 

2 0.0000*107 -1.1985*107 2 0.0000*106 4.9065*106 

 
The principal coordinates qj(t) have been generated by the 

numerically stable Euler’s implicit-explicit scheme, as 

functions of time, for different speeds of the transient 

force. The principal coordinates when premultiplied by 

the respective modeshapes, and superposed, generates the 

total beam deflection as a function of space and time 

z(x,t).  

The maximum dynamic deflection is normalized by the 

maximum static deflection to generate the Dynamic Load 

Factor (DLF), which is generated as a function of the non-

dimensional wetting time τ. The numerator and the 

denominator may occur at different locations, and at 

different time instants. The DLF is defines as : 

 
.

),(

),(










txzMax

txz
MaxDLF

st

 

4.2.1 Uniform Load 
Fig.5 shows the generalized force for the first 

five modes of a CC beam, at τ = 0.5, as a function of time. 

The force is a uniform stretching load, and hence spatially 

aligns itself only with the odd modeshapes. The even 

modes give zero generalized force after the load has 

completely swept across. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (sec)

G
en

er
al

iz
ed

 f
o

rc
e 

(t
)

 

 

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

 

Fig.5  GF vs. time for the first 5 modes of a CC beam, at τ 

= 0.5. 

 

The dynamic and static deflections at the 

midpoint of the beam, for the uniform stretching load, as a 

function of time, for τ = 0.5 and 2.5 are plotted as follows 

in Fig.6. For τ = 0.5, as the load sweeps across quickly, 

the maximum static deflection is reached quickly, and the 

dynamic overshoot is about 90% higher than the 

corresponding static deflection. For τ = 2.5, as the load 

sweeps across the beam slowly, the maximum static 

deflection is reached later, and the dynamic overshoot is 

hardly 5% of the static mean.  

Fig.7 shows the dynamic loading factor DLF vs. 

τ (the non-dimensionalized wetting time) for a uniform 

Timoshenko beam, without axial load, for various end 

fixities and damping ratios δ. Increase of end fixities 

makes the beam stiffer (i.e. increases the natural 

frequencies), and hence stretches the τ-axis if the plot. 

Larger values of τ indicate a stiffer beam (or massless 

beam) or a large wetting time, i.e., a slow transition of the 

moving loads. In this zone of the non-dimensionlized 

time-scale, the response is quasi-static, i.e. the DLF is 

around 1.0. Decreasing the τ increases the dynamic 

behavior of the beam, leading to larger DLF. Here, we 

have very fast moving loads, or a very tender beam (or 

massy beam). For τ ≤ 2, the dynamic response becomes 

increasingly prominent, showing considerable overshoots 

above the static analysis. 
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Fig.6  Dynamic z(L/2,t) & static deflection zst(L/2,t) for CC 

beam, for uniform loading at τ = 0.5, 2.5; for 0% damping. 
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Fig.7  DLF vs. τ for a Timoshenko beam under uniform load, 

0% and 5% damping. 
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At smaller τ the DLF steeply rises to asymptote 

to ~ 2.00, which is the DLF for a uniformly distributed 

load instantaneously acting on the beam. The response for 

τ < 1 can be said to be a slamming-response, which is 

somewhat restricted by the damping. The response at zero 

damping provides the upper limit of the response 

characteristic for a range of τ. Inclusion of structural 

damping reduces the first dynamic overshoot over the 

static deflection, and hence the dynamic zone of the DLF 

(0<τ<2) sees a stunted DLF. Damping also smoothens the 

DLF characteristic in the quasi-static zone.  

The DLF become exactly 1.0 at regular intervals : e.g. for 

a SS beam, DLF = 1.0 at τ = 1.5, 2.5, 3.5, 4.5, and so on. 

For a CC beam, the first DLF=1.0 occurs at τ = 1.85.  

Inclusion of axial tension in the beam vibration 

analysis is practically relevant, since marine structural 

members are constantly under axial loads due to static 

pre-deflections, hogging/sagging of the keel plate, 

compressive loads on the bulkheads due to derricks, etc. 

Several members of a marine craft may be pre-stressed 

due to rolling (during fabrication). The magnitude of the 

tensile force is equal to the critical buckling load, as given 

in table. The value of the critical load, as shown in table 

7, is known for the classical end conditions, i.e. for SS 

and CC beams.  The critical load magnitude for the 

intermediate end fixities are calculated through linear 

interpolation. Greater the end fixity, larger is the critical 

buckling load. 

 
Table 7   Axial tension applied on the beam 

% Fixity 0% 55% 70% 100% 

Tension 

(N) 2

2

L

EI
 

2

265.2

L

EI
 

2

21.3

L

EI
 

2

24

L

EI
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Fig.8  DLF vs. τ for an (tensile) axially loaded Timoshenko 

beam under uniform load, 0% and 5% damping. 

 

Fig.8 shows the dynamic loading factor DLF vs. 

τ (the non-dimensionalized wetting time) for a uniform 

Timoshenko beam, with axial tensile load N, for various 

end fixities and two damping ratios δ = 0% and 5%.  

Axial tension stiffens the dynamic behavior of the beam, 

thereby squeezing the range of the dynamic behavior of 

the beam. E.g., for an SS beam, the first DLF = 1 occurs 

at τ = 1.5 without tension; but it occurs sooner, at τ~1.05, 

with axial tension. Again, for a CC beam, the first DLF = 

1 occurs at τ = 1.85 without tension; but it occurs sooner, 

at τ~1.3, with axial tension. 

By intuition, compression should stretch the τ-scale of the 

DLF plot, thereby increasing the range of τ which shows 

dynamic behavior.  

 

Impact Load.  
Fig.9(a) shows the sweeping impact load at a 

deadrise angle β = 5 degree. The keel pressure remains a 

constant at x = 0 location, while the peak pressure moves 

across the length of the beam at a speed Vπ/2sinβ. The 

spatial configuration of the load becomes nearly a 

uniformly distributed load after a long time. The 

generalized force for the impact stretching load, against 

the five modeshapes, as a function of time, at τ = 0.5, is 

plotted as follows in Fig.9(b). The force aligns itself 

spatially with the odd modes, while the even modes 

produce a zero generalized force after the impact has 

swept across. Fig.10 shows the corresponding dynamic 

and static deflections at the midpoint of the beam, as 

functions of time, for a simply-supported (SS) 

Timoshenko beam, at a deadrise angle of 5 degrees, 0% 

damping. 

Fig.11 shows the dynamic deflection and the 

negative of the static deflection, at five different time 

instants as a function of length at τ = 0.5, for a deadrise 

angle of β = 5 degrees. For 0 < τ < 0.5, the impact already 

sweeps through and the static deflection already peaks, 

before the dynamic deflection rises to its maximum.  
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Fig.9 Transient impact force F(x,t) and generalized force GF(t) 

at β = 5, τ = 0.5, for a SS beam. 
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Fig.10  Dynamic z(L/2,t) & static deflection zst(L/2,t) for SS 

beam, for impact loading at τ = 0.5; for 0% damping, at β = 5 

degrees. 
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Fig.11 Dynamic deflection and (-) Static deflection at β = 5, τ = 

0.5, for a SS beam. 
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Fig.12 DLF of a Timoshenko beam at β = 5 degrees. 

 
Fig.12 shows the DLF of a Timoshenko beam, at 

a deadrise angle β = 5 degrees; at a two different damping 

ratios δ = 0%, 5%. The time-scale is non-dimensionalized 

with respect to the deadrise angle, and hence the DLF 

characteristic is almost the same for a range of deadrise 

angles. Between 1 < τ < 2.5, a smaller deadrise angle 

produces a greater DLF due to more severe and 

concentrated impact pressure. A greater deadrise angle 

smears and spreads the impact pressure distribution, 

thereby producing a slightly smaller DLF. Beyond τ = 

2.5, all the deadrise angles produce a quasi-static 

behavior.  
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Fig.13 DLF vs. τ for an (tensile) axially loaded Timoshenko 

beam under impact load, 0% damping, β = 5 degrees. 

At very low values of τ, the DLF sharply drops 

and asymptotes to zero. The load sweeps across too fast 

for the beam to dynamically react, whereas the static 

analysis over-predicts the deflection. Hence their ratio 

decimates, for all end fixities and axial loads. Damping 

reduces the maximum DLF. 

Fig.13 shows the dynamic loading factor DLF vs. τ 

(the non-dimensionalized wetting time), at β = 5 degrees, 

for a uniform Timoshenko beam, with axial tensile load N 

(given in Table 7), for various end fixities and no 

damping. Tension compresses the τ-axis, with the 

dynamic response zone shortening to 0.5<τ<1.5. In this 

zone, greater end fixity produces a larger dynamic 

amplification. For τ<0.5, the behavior is consistent for all 

end fixities and axial loads.  

 

5. Conclusions. 

 
The designer aims to design structure with the 

boundary conditions and, stiffness and damping such that 

the composite time-scale τ is greater than 2.5 for the most 

probable impact velocities. To operate in the quasi-static 

range, the forcing speed should be low, or the natural 

frequency of the beam must be high. A craft meant for 

inland operations (i.e. calm waters) can afford a softer 

structure, where slamming is less common. A sea-going 

vessel, on the other hand would require a stiffer bottom 

structure to ensure a quasi-static response. High-speed 

vessels, though use mostly in calm waters, needs stiffer 

material, since the varying dynamic lifts (partially 

supporting the craft weight) cause repeated slamming of 

the bow at high impact speeds. 

 

Nomenclature 
x Independent space variable along the beam 

T Independent variable in time 

z(x,t) Dynamic flexural deflection of the beam 

zst(x,t) Dynamic flexural deflection of the beam 

Φ(x,t) Pure-bending slope of the beam 

zst  Static flexural deflection of the beam 

L Length of the beam 

ρ Density of the beam material 

E Elastic modulus of the beam material 

I Second moment of area of the beam cross-

section about the horizontal neutral axis. 

G Shear modulus of the beam material 

μ Shear correction factor (5/6 for rectangular 

cross-section) 

A Cross-sectional area of the beam 

LK  Spring constant on the left end 

RK  Spring constant on the right end 

)(xj  Beam modeshape 

)(xj  Pure bending slope modeshape 

δj,γj j
th

 frequency parameter pair for Timoshenko 

beam. 

qj(t) Principal coordinate 

F(x,t) External transient load 
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ω n1 Fundamental natural frequency of the beam 

Tn1 Fundamental natural period of the beam 

Tsp Splash time 

τ Non-D splash time 

V Vertical impact velocity of slamming 

β Deadrise angle of the craft 

DLF Dynamic Loading Factor 
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