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Abstract— State-based Markov deterioration models (SMDM) 

sometimes fail to find accurate transition probability matrix 

(TPM) values, and hence lead to invalid future condition 

prediction or incorrect average deterioration rates mainly due to 

drawbacks of existing nonlinear optimization-based algorithms 

and/or subjective function types used for regression analysis. 

Furthermore, a set of separate functions for each condition state 

with age cannot be easily derived by using Markov model for a 

given bridge element group, which however is of interest to 

industrial partners. This paper presents a new approach for 

deterioration modelling that follows homogeneous Markov 

models, namely, the Modified Weibull approach, which consists 

of a set of appropriate functions to describe the percentage 

condition prediction of bridge elements in each state. These 

functions are combined with Bayesian approach and Metropolis 

Hasting Algorithm (MHA) based Markov Chain Monte Carlo 

(MCMC) simulation technique for quantifying the uncertainty in 

model parameter estimates. In this study, the inspection data for 

1,000 Australian railway bridges over 15 years were reviewed 

and filtered accordingly based on the real operational experience. 

Network level deterioration model for a typical bridge element 

group was developed using the proposed Modified Weibull 

approach. The condition state predictions obtained from this 

method were validated using statistical hypothesis tests with a 

test data set. Results show that the proposed model is not only 

able to predict the conditions in network-level accurately but also 

capture the model uncertainties with given confidence interval.   

Keywords—Deterioration modelling, Modified-Weibull 

approach, MCMC simulation, Markov model, MHA Algorithm. 

I. Introduction 
Infrastructure deterioration is a serious problem across many 

countries in the world. Use of mechanistic and numerical 

models for evaluation of the service lives of infrastructure 

components/elements is quite complex due to higher degree of  

uncertainties involving in the deterioration process and the 

inspection data have been popularly and widely used fo r 
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presence of multiple-deterioration process that often occurs. 

Therefore, facility deterioration models are used for estimating 

future conditions [1], [2], [3] and [4] especially for network 

level deterioration modelling. Discrete conditions are normally 

used for rating infrastructure facilities by inspectors, based on 

visual condition of a given component according to guideline 

provided by their agencies. For example, one of the main 

Australian rail bridge agencies uses condition scale of 1 to 6; 

where condition rating one indicates the best condition without 

any visual defect, whereas rating 6 represents the 

unserviceable condition state of the given bridge or 

component. Inspection actions are normally performed 

annually or biannually [1].  

Infrastructure components/elements gradually deteriorate 
with time and the conditions of those do not improve with 
time unless some kind of repair or rehabilitation work was 
done. Deterioration patterns of these components depend on 
potential contribution factors. For example, deterioration 
patterns and rates of rail bridge elements  may vary with 
different potential determinants such as age, rail-traffic 
volume, environmental categories, etc [1]. By keeping other 
potential factors constant except the age, it is possible to make 
homogeneous bridge element group in terms of other 
contribution factors. If historical condition rating data are 
available for adequate period of time for these groups, those 
can be utilized to develop Homogeneous Markov 
Deterioration models.   

State-based Markov Chain approach is the most popular 
infrastructure stochastic deterioration modelling technique that 
has been extensively used for especially network level 
deterioration modelling of bridges and other infrastructure 
facilities [1], [3], [4] and [5]. For example, in advanced Bridge 
Management Systems (BMS) in the world such as PONTIS 
and NYSDOT in the United States, KUBA in Switzerland, 
OBMS in Canada, etc. In [1] and [4], State-based Markov 
Bridge Deterioration Models (SMBDM) is employed. The 
most challengeable task of developing state-based Markov 
deterioration models is to obtain the Transition Probability 
Matrixes (TPM), which is also known as calibrating the 
Markov model.  Morcous and Hatami (2011) [6] applied 
Regression-based Nonlinear Optimisation (RNO) method to 
calibrating homogeneous Markov deterioration models of 
bridges belonging to Nebraska Department of Roads since the 
time when they decided to adopt PONTIS. Although there are 
other methods available for estimating TPMs with their own 
advantages and limitations [1], RNO has been commonly used 
for estimating TPMs of SMBDM in previous studies [2], [3] 
and [6]. Wellalage et al. [1] pointed out the drawbacks of 
RNO for TPM estimation and proposed a MCMC simulation-
based model for estimating TPM of Homogeneous SMDM of 
railway bridge elements by overcoming the above limitations. 
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In [1], it was noticed that an important feature of the Markov 
model output which the percentage of each condition state 
resulted from Homogeneous Markov models could be 
obtained through one type of Weibull related functions. This 
paper presents an alternative approach to deterioration 
modelling. In this approach, a set of analytical formulas for 
percentage condition distributions is proposed in which 
Bayesian and Metropolis Hasting Algorithm (MHA) based 
MCMC methods are used to estimate model parameters. The 
proposed modified Weibull model approach is applied to a 
case study to investigate accuracy and suitability of the model.  

II. Markov Approach  
State-based Homogeneous Markov Deterioration Modelling 

(SHMDM) is only considered in this study. The main task to 

use the state based Markov deterioration models is to estimate 

Transition Probability Matrix/matrixes (TPM). According to 

five possible condition states considered by main Australian 

rail bridge authorities, it is 5×5 in dimension. Without a 

rehabilitation or repair work, the bridge component condition 

ratings either increase to a higher number or remain 

unchanged in one inspection period [1], [3] and [6]. Assuming 

no multi-transition events occur within one year [1], [2] and 

[3], one year TPM can be simplified and expressed as given in 

Eq.1. If TPM and initial condition state matrix (C(0)) are 

known, condition state  matrix after time t can be obtained by 

Chapman-Kolmogorov formula as stated in Eq.2.   
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 (2) 
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Figure 1. Typical condition state distribution patterns of SHMDM 

III. Methodology: Modified Weibull 

Model 

A. Modelling of percentage condition states 
It was observed that the network level deterioration models 

of similar characteristic infrastructure component group that 
follows Homogeneous Markov deterioration models can be 
modelled by using this proposed approach.  In this study, 
percentage condition distribution of such component group is 
assumed to follow a set of analytical functions with unknown 
model parameters. Percentage condition distributions for all 
condition sates except for the first (Best condition) and the last 
(unserviceable) condition states are modelled by using 
following form of modified Weibull function: 

             ii

rt

iiii dcrtwblbrtatC ),(exp)(),( )(            (3)   

where, C(t, θi) is percentage distribution function of bridge 
elements in condition i at age t , for  n > i > 1; θ = (ai, bi, ci, di) 

is of unknown model parameters at state i, (i = 2, 3, 4, …., n1 
with State n is the unserviceable condition sate); and ai  is 
scale parameter (1 ≥ ai > 0 ); bi is the exponential model 
parameter (1 >  bi > 0); ci, and di are Weibull parameters (ci > 
0, di > 0); t is the bridge element age in years (t ≥ 0); r is 

location parameter (r ≥ 0 and r = i 2 for all i > 1, r ∈ ℤ+
); and 

wbl((tr), c, d) is the Weibull distribution with location 
parameter r, expressed as  
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Percentage condition curve of last condition state in 
Homogeneous Markov deterioration models was noticed as an 
S-shaped curve. Thus, the best sigmoid function form for 
modelling final, which is modelled as   
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Although in Markov model, 2

11),1( pC
n
  according to 

Equation 1 and 2, it was not found as the optimal function type 
and hence was not considered. If other condition proportions 

are known, ),1( n
C  can be easily calculated by using the total 

probability theorem as the sum of all percentages for a given 
time is equal to 1. 

B. Modelling uncertainty in parameter 

estimation 
Like all models, an assumption is made that the function 

),( ntiC  relating a set of causal input variables i , to the 

dependent variable of interest, y, as follows: 

                                         y = ),( ntiC  + .                          (6)  
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Where, θ is unknown and  is a random noise component 
with zero mean and constant variance (known as Gaussian 
noise model). The problem is to estimate the unknown 
parameters θ based on the measurement, y. The objective of 
this work is to find an optimal estimate of  θ such that the best 
fit between the observed percentage condition rating data for 
each state and the relevant proposed Modified Weibull curve 
for desired condition state (modelled response) is obtained.  

C. Bayesian approach 
Let consider a set of data (percentage of components) 

available for a bridge element group as Y = {y1, y2, y3, ..., yn} 
and θ represents unknown model parameter vector (in here 
unknown elements in Cit equation). Joint probability 
distribution P(Y/θ) is known as the sampling distribution or 
likelihood function which should be a known parameter to 
perform any inference [7]. P(θ/Y) is the posterior distribution 
or target distribution and P(θ) is called prior distribution of 
unknown model parameter. According to Bayes‟ rule for 
known value of data y, posterior density is proportional to 
multiple of prior density into likelihood function [1] as given 
in Eq. 7.  

                              P(θ/Y)  P(θ) P(Y/θ).                         (7) 

Primary task of specific application is to develop a model 
for P(θ/Y) and perform required computation to estimate the 
target density P (θ /Y) [1]. Non-informative prior density is a 
common case and can be assumed as a uniform distribution 
based on Bayes-Laplace „„principle of insufficient reason‟‟ 
[8]. As a result, the posterior density is proportional to the 
likelihood function. 

Assuming that the model residuals are independently and 
normally distributed with zero mean and constant variance σ

2
, 

the likelihood function can be described by [10]:  
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where, yti = Percentage of components in data set for age t in 
condition i.   

With assumption of model residuals are normally 
distributed with zero mean and same constant variance σ

2
 for 

c(t, θi) for i = 2, 3, 4, 5, overall likelihood function can be 
obtained and deduced into the following format   
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t is the bridge element service life  in years, T is the largest age 

found in the data set, c(t, θi) is percentage distribution function 

value of bridge elements in condition i at age t and yti is 

percentage of condition state i bridge elements at age t in the 

data set.  

D. MCMC Simulation with Metropolis 

Hasting Algorithm (MHA) 
Posterior density of given model parameters is proportional to 

multiple of prior density into likelihood function from Eq. 7. 

This property is used in this analysis to allow Metropolis 

Hasting Algorithm (MHA)-based MCMC simulation to 

generate samples from posterior distribution [2, 6]. In MHA, 

it‟s required to choose a proposal density q(x, y) where total 

integral of q(x, y) is equal to 1 for sampling from the target 

distribution [7]. The proposal density q(x, y) is often selected 

from a symmetric and multivariate distribution, which is also 

known as symmetric random-walk metropolis algorithm 

(RWM). With assumption of a standard nonlinear model (in 

Eq. (6) with Gaussian noise and a non-informative prior, 

acceptance probability of Metropolis algorithm can be 

rewritten as follows [9]: 
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Initial values of model parameters for MHA were 

randomly chosen within the boundary conditions because they 

do not affect the convergence to the target distribution of the 

chain according to the theory [10]. Initial values for the 

Variance Covariance Matrix (VCM) is arbitrarily chosen and 

tuned until the acceptance rate becomes near to the optimum 

value of acceptance, 0.234 [11]. This MCMC simulation 

model is run with historical condition rating percentage data 

until the model parameters converge to stationary 

distributions.  

IV. Verifying the Model for Given 

TPM 
According to Australian rail bridge rating system, n = 5. 

Hence, 15 parameters were optimised as they represent 
Markov model output. Here, θ = [θ1, θ 2 , θ 3, θ 4].  

A Transition Probability Matrix estimated for timber deck 
elements in previous study [1] was considered for this 
analysis,   
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10000

10.090.0000

007.093.000

0007.093.00

00015.085.0

 .                (11) 

 

For r = 0, 1, 2 and i = 2, 3 and 4;  
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Therefore, C1(t) can be calculated by 
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Figure 2. Modified Weibull fit for given TPM in SHMDM 

 

    In Fig. 2, the dotted points were obtained from 

homogeneous SMDM for given TPM and solid curves 

represent the relevant fitted curves by Modified Weibull 

functions obtained by MCMC with MHA. Total error was 

found to be less than 1% and R
2  

values were greater than 0.99 

for each condition state.     

 
TABLE I. Parameter values for Markov model fitting 

 

 

 

 

 

 

 

V. Case Study 
According to data availability, past condition rating data of 50 
transverse timber bridge decks that are homogeneous in terms 
of contribution factors (such as average tonnage passes per 
week, Environmental Categories, etc.) except age, in 3 major 
inland railway lines, over past 15 years were selected to do 
this analysis. Due to insignificant number of bridges in each 
line, analysis was done by combining bridges in different 
railway line with similar characteristics based on assumption 
that the observed bridge condition ratings are randomly 
distributed about their true values.   

    Please refer to [1] for detailed description of the data 
filtration process. 387 total records were obtained after 
filtration process for this data set. For statistical validation and 
comparison purposes, data set was split randomly such that 
75% as calibrated data set and the rest as the test data set. 
Calibrated data set was used for analysis first and then 
validated with test data set by using Chi-square test [2].   

A. Analysis results 
    MATLAB program codes were developed with MHA 
algorithm according for MCMC. The MHA ran with 150,000 
iterations for the calibration data set until the condition state 
functions‟ variable values converge to stationary distributions 
by avoiding first 100000 warm-up runs. Variance covariance 
matrix was adjusted until acceptance rate becomes near to 
optimum acceptance rate of 0.234. Variance of the random 

noise component  was kept as 1×10
-3

 throughout the analysis. 
It was noticed that the mean values of these parameters 
converge to almost constants. By using estimated parameter 
values, the proposed formulas given in Eqs. 3 and 5 were 
applied to obtain the percentage of bridge elements in each 
state vs time as given in Fig. 3. 

TABLE II. Estimated parameter values from modified Weibull approach 

 a b c d r 

1 0.436 1.000 12.223 1.215 0 

2 0.258 0.992 23.349 1.542 1 

3 0.424 0.058 31.410 1.607 2 

4 42.589 3.738 0.806 - - 
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Figure 3. Modified Weibull Model for case study 

VI. Verification of Results 
Test results are validated by using Chi-square test for 

calibrated and test data sets. According to Table III, the 

Modified Weibull approach results passed the goodness-of-fit 

test since Chi-Square values for both calibration and test data 

set are well below the Chi-Square critical value. Therefore, it 

can be argued that Modified Weibull approach presents in this 

paper is suitable for network-level deterioration modelling of 

selected bridge elements in this study. The estimated model 

parameters (Mean in Table IV), standard deviations and 95% 

confidence intervals are given on Table IV. It is clear that the 

standard deviation is very small comparing to the mean value 

of each model parameter.      

 

 

 

 

 a b c d r 

2 0.799 0.946 12.210 1.05 0 

3 0.318 0.988 24.052 1.361 1 

4 0.330 0.286 31.507 1.680 2 

5 42.97 3.300 0.8754 - - 
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TABLE III. CHI-SQUARE VALUES OF MCMC METHOD RESULTS 

  

    Method 

Chi-Square values with 4 degrees of freedom  

( ≤ 9.49) 

Calibrated data set  Test data set  

MW approach 

 with MCMC 0.4237 1.812 

 

TABLE IV. MODEL PARAMETERS AND 95% CONFIDENCE 
INTERVALS  

 

VII. Conclusion 
This paper proposed an alternative approach for network level 

Homogeneous Markov bridge deterioration modeling, named 

Modified Weibull approach. In this approach, a set of 

analytical formulas for percentage condition prediction is 

obtained in which Bayesian and Metropolis Hasting Algorithm 

(MHA) based on MCMC methods are used to estimate model 

parameters. The model obtained from this approach is applied 

to a case study to investigate the accuracy and suitability of 

the model.     

    Outputs of the deterioration models are validated by using 

goodness-of-fit test. Results show that Chi-square values of 

the model with the parameter estimates for calibrated and test 

data set are well below the critical Chi-square value. Obtaining 

very small Chi-square values compared to critical value 

convinced the superiority of the proposed approach with 

powerful MHA for bridge deterioration modeling. 

Furthermore, the proposed approach can capture the 

uncertainties of model parameters with given confidence 

intervals.  

    Further, it is promising that the proposal approach is able to 

be applied to network-level deterioration modelling for other 

bridge components and other infrastructure facilities that 

follow homogeneous Markov process.      
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  Model  

parameter 
Mean STD Upper limit 

Lower 

limit 

a2 0.436 0.00282 0.4364 0.4356 

b2 1.000 0.00225 1.0003 0.9997 

c2 10.223 0.00349 10.2234 10.2226 

d2 1.215 0.00482 1.2156 1.2144 

a3 0.258 0.00454 0.2586 0.2574 

b3 0.992 0.00079 0.9921 0.9919 

c3 23.349 0.00670 23.3499 23.3481 

d3 1.542 0.00696 1.5429 1.5411 

a4 0.424 0.00276 0.4244 0.4236 

b4 0.058 0.00670 0.0589 0.0571 

c4 31.410 0.01220 31.4115 31.4085 

d4 1.607 0.00097 1.6071 1.6069 

a5 42.589 0.01173 42.5905 42.5875 

b5 3.738 0.01277 3.7396 3.7364 

c5 0.806 0.00201 0.8063 0.8057 
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