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Abstract—Although next generation sequencing of 

diseased traits has unraveled thousands of DNA alterations, the 

functional relevance of most of these mutations and how they 

relate to other epigenetic mechanisms are still poorly understood.  

Here, we present SnvDMiR as a freely–available R pipeline that 

conducts combinatorial proximity analysis between disease–

associated SNVs, deregulated miRNAs, and differentially 

methylated regions (DMRs) to identify genomically adjacent 

SNV-miRNA pairs as well as SNV-DMR pairs. These variants 

could be further investigated as putative candidates for driving 

pathogenic processes in diseases. We demonstrated the usefulness 

of the SnvDMiR pipeline by applying it on a published set of 

breast cancer-related mutations, deregulated miRNAs, and 

DMRs. Our pipeline characterized potential driver mutations 

that are predicted to have damaging effects on related protein 

functions. Availability: http://gepard.bioinformatik.uni-

saarland.de/software 
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I.  Introduction  
To further our understanding of human oncogenesis, high-

throughput sequencing of tumor genomes has uncovered 
thousands of DNA alterations such as somatic mutations of 
single nucleotide variants (SNVs) that may be important for 
tumor initiation or progression (1-7). Nevertheless, it remains 
a pressing challenge to determine which mutations are key 
drivers for tumor pathophysiology and which ones are 
passengers with no functional effects. To address this need, 
several approaches have been presented to characterize driver 
missense mutations (4, 8-10). Most straightforward is the 
annotation of non-synonymous mutations in oncogenes or 
tumor suppressors. In contrast, relatively little attention has 
been paid to cases where driver mutations could be in close 
genomic proximity to disease-related genes, miRNAs, or 
methylated CpG sites. 

DNA methylation is an epigenetic mechanism that is being 
increasingly recognized to play an important role in the 
regulation of gene expression and is used as epigenetic marker 
for different disease pathways (11-14). DNA methylation 
typically occurs in a CpG dinucleotide context that is often 

grouped in clusters called CpG islands. DNA methylation 
profiling unravels differentially methylated regions (DMRs) 
that are in principle CpG sites altered during disease or 
oncogenic processes (15). Hypermethylation of CpG islands 
located in promoter regions, for example, is involved in gene 
silencing at the transcriptional level (16) and often leads to a 
high rate of C to T mutations at these sites (17).  

MicroRNAs (miRNAs) are small, non-coding RNAs that 
function as post-transcriptional regulators of mRNA 
expression. A miRNA can target a plethora of mRNAs, 
creating a post-transcriptional regulatory network (18) that has 
a critical role not only in cellular functions (19) but also in 
pathological processes (20) especially in human 
cancerogenesis (18, 21-23). A considerable amount of 
literature has been published on miRNA-related mutations and 
on the impact of somatic mutations on miRNA functions. 
These studies have reported that genetic variants within 
miRNAs or their target sites can alter miRNA function in 
cancers (24-28) and have been associated with cancer risk, 
treatment efficacy and patient prognosis (24), as well as 
genomic phenotypes (29). 

The recent availability of disease-related genomic data such 
as somatic mutations, associated DMRs and miRNAs calls for 
the development of integrative genomic proximity-based 
approaches to better understand the functional relevance of 
most of these mutations and how they relate to epigenetic 
marks. To this end, this study presents SnvDMiR, a freely–
available R pipeline that is able to conduct combinatorial 
proximity analysis between disease–associated SNVs, 
deregulated miRNAs, and DMRs to identify genomically 
adjacent SNV-miRNA pairs as well as SNV-DMR pairs. We 
have demonstrated these features on breast cancer-related 
datasets [Hamed et al. 2015, accepted in BMC Genomics] and 
we review these here as an example to confirm the 
functionality of our tool. The matched SNVs suggested 
putative driver mutations that could play a critical role in 
breast cancerogenesis. 

II. Implementation 
SnvDMiR is a computational pipeline implemented in R. 

(Fig. 1). Based on lists of genomic variants, deregulated 
miRNAs, differentially methylated sites, and user defined 
parameters (configurations), SnvDMiR investigates whether 
the significantly deregulated miRNAs and differentially 
methylated sites are in close genomic vicinity to the provided  
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genomic variants and outputs matching entries in tabular 
and ideogram plots. The user needs only to run the main script 
SnvDMiR.R which in turn loads the required 
libraries/packages, carries out the analysis on the input data, 
and visualizes the matched entries in  genomic ideograms with 
circular layouts. 

For matching miRNAs and somatic variants, the genomic 
coordinates of the significantly deregulated miRNAs were 
downloaded from miRBase (30). Then, SnvDMiR searches for 
the miRNA sequences in a predefined genomic window 
(default is 250kb (31)) around each somatic variant. The 
window size can be set in the configuration file attached with 
the SnvDMiR script. The matched miRNA-SNV pairs, where 
the miRNAs occur within the window around the SNV 
location, are extracted into the som-miRNA-matches.txt file in 
the output folder.  

The second part of the SnvDMiR functionality is to explore 
whether differentially methylated regions (usually CpG 
islands) are in the vicinity of somatic mutations. To this end, 
our tool tests the occurrence of the SNV within a certain 
genomic distance (default is 3kb) from the genomic 
coordinates of the differentially methylated sites. The default 
setting of the predefined distance in the configuration file 

(3kb) was based on the maximum considered length of typical 
CpG islands, that is, 500bp (17) ≤ CpG islands ≤ 3kb (32). 
Moreover, the user has the option to investigate only the C-
>A, C->G, and C->T SNVs instead of all mutations via setting 
the parameter filter_mutations in the configuration file. The 
matched entries are also exported to som-DMR-matches.txt 
file in the output folder.  

Finally, SnvDMiR utilizes the circlize R package (33) to 
efficiently plot the related ideogram and flexibly visualize the 
matched entries in a circular layout as well as the entire input 
data (all SNVs and either all miRNAs or all DMRs) as 
genomic background. This helps to better understand the 
genomic patterns behind the matched entries. Documentation 
demonstrating the use of the SnvDMiR tool, sample input 
files, and the user manual are provided with the tool. We 
encourage users to adopt the output to their needs using self-
defined parameters. 
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Figure 1.  The data model of the SnvDMiR pipeline. A schematic diagram describing data processing and integration of genetic variants, deregulated 

miRNAs and DMRs.  
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III. Case study 

A. Application on breast cancer 
In a recent work on breast cancer (Hamed et al. 2015), we 

processed DNA methylation, miRNA expression, and somatic 
mutation datasets for 131 tumor samples and 20 control 
samples of healthy tissues downloaded from the TCGA portal 
(34). The differential analysis of the DNA promoter 
methylation and miRNA expression data determined 2623 
differentially methylated gene promoters and 121 
differentially expressed miRNAs, respectively. In order to 
scrutinize the functional relevance of the somatic mutations 
and how they relate to other epigenetic mechanisms (such as 
DNA methylation and deregulation of miRNAs), we applied 
the SnvDMiR pipeline to these somatic mutations, the 
deregulated miRNAs, and the differentially methylated 
regions. 

SnvDMiR tested whether the significantly differentially 
expressed miRNAs are in genomic vicinity to the respective 
somatic variants by assuming that deregulation of miRNA 
expression due to carcinogenesis may somehow be related to 
the associated nearby somatic variants. We searched for the 
coding sequences of the deregulated miRNAs in a genomic 
window of 250 kb around the somatic variants as previously 
described in (31). We detected 21 cases of physical genomic 
proximity between somatic variants and the deregulated 
miRNAs (Hamed et al. 2015). They are mostly located in 
chromosomes 1, 7, and 19 (Fig. 2). These 21 cases encompass 
15 distinct mutations and 20 distinct dysregulated miRNAs. 
To test the significance of these cases, we performed 1000 
Wilcoxon tests against random SNV positions considering the 
same mutation frequency for each chromosome. The 
deregulated miRNAs identified in the 21 cases were 
significantly closer to their somatic SNVs pairs in comparison 
to random SNV positions (p-value equal to 0.001). We also 
checked whether the non-deregulated miRNAs (925 miRNAs) 
are in genomic proximity to the 15 somatic mutations involved 
in the 21 cases as well. We found that 52 non-deregulated 
miRNAs (5.6%) were in vicinity to only 8 mutations so that 
the other 7 mutations are exclusively associated with the 
deregulated miRNAs (Hamed et al. 2015). 

Similarly, we analyzed the somatic mutations that mainly 
occurred at differentially methylated CpG sites in promoter 
regions. Overall we identified 347 pairs of SNV- differentially 
methylated promoter regions (Hamed et al. 2015). These were 
mostly located on chromosomes 1, 5, and X (Fig. 3). To 
address how changes in methylation levels caused by 
tumorigenesis correlate with mutation rates of different 
mutation genotypes, we separately analyzed the cases of up- 
and down-methylated promoters. 234 cases involved up-
methylated genes, whereas only 113 were associated with 
down-methylated genes. Generally, mutations in the promoter 
regions of up-methylated genes occur at a remarkably higher 
rate than its peers in down-methylated genes especially the C-
>T genotypes since methylated cytosines are prone to thymine 
transitions via deamination. This result is in line with the 
findings of Xia et al. (17) who examined the relationship 
between DNA methylation and mutation rate.  

 
Figure 2. Proximity analysis of the somatic mutations with the dysregulated 

miRNAs. Ideogram plots showing the genomic distribution for the 21 cases of 
deregulated miRNAs adjacent to somatic mutations. The outer blue circle 

represents the subset of the breast cancer SNVs and the next highlighted red 

lines depict the SNVs matched to the 21 cases. The inner yellow circle shows 
the input deregulated set of miRNAs, whereas the next highlighted red lines 

refer to the adjacent (matched) deregulated miRNAs (20 miRNAs where one 

miRNA is matched to 2 SNVs).  

 
Figure 3. Proximity analysis of the somatic mutations with differentially 

methylated regions. Ideogram plots showing the genomic distribution for the 
347 cases of SNVs occurring in the promoter regions of differentially 

methylated genes. The outer blue circle represents the entire set of breast 

cancer SNVs and the next highlighted red lines depict the SNVs matched to the 
identified cases. The inner yellow circle shows the entire set of differentially 

methylated genes, whereas the next highlighted red lines refer to the identified 

cases adjacent to the SNVs. The plot illustrates also the count of the three 
considered types of mutations (C->T, C->G and C->A). 
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B. Validation and assessment 
In order to validate the results obtained by the SnvDMiR 

pipeline, we examined which of the above somatic mutations, 
which were identified on the basis of their vicinity to either 
dysregulated miRNAs or differentially methylated genes, 
could potentially drive tumor cell proliferation in breast 
cancer. For this, we applied the CHASM tool (1) to distinguish 
between driver and passenger somatic mutations. As training 
set, we used the breast cancer labeled data (BRCA) curated 
from the COSMIC database (35) and provided by CHASM. 
We identified nine putative driver mutations (three from 
miRNA cases and six from differentially methylated gene 
cases) suggesting their causative role in tumorigenesis (Hamed 
et al. 2015). All these nine mutations are missense and lead to 
an amino acid substitution. Next, we analyzed the possible 
impact of the resulting amino acid substitution on structure 
and function of the respective protein using the PolyPhen (36) 
and SIFT (37) prediction tools. Interestingly, both methods 
predicted damaging effects of these mutations on protein 
function confirming their putative role in driving cancer 
(Hamed et al. 2015). This strongly supports the usefulness of 
the SnvDMiR pipeline in integrating the genetic mutations 
with deregulated miRNAs and DMRs to identify putative 
driver mutations that may open up new avenues for novel 
therapeutic drugs.  

IV. Conclusion 
In this paper, we presented SnvDMiR, a freely–available R 

pipeline that examines the genomic proximity between 
somatic mutations, disease-related miRNAs, and DMRs in 
order to identify putative driver mutations that could possibly 
play an important role in disease pathways. We demonstrated 
the usefulness of the SnvDMiR pipeline by applying it to a 
dataset of breast cancer-related mutations, deregulated 
miRNAs, and DMRs. Further analysis revealed that almost 
half of the identified mutations were predicted to have 
deleterious effects on related protein functions and therefore 
might be valid targets for new drugs. Especially when 
combined with experimental validation, our proximity pipeline 
could promote important insights on disease genomic data to 
develop new therapeutic strategies and thus better treatment. 
Finally, SnvDMiR is an extendible pipeline that can be applied 
on various diseases-related datasets and can be further 
expanded to study cellular functions where such multi-
dimensional genomic data are available. 
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