International Journal of Environmental Engineering-IJEE Volume 1 : Issue 4

[ISSN 2374-1724]

Publication Date : 27 December, 2014

CO₂ sequestration using Characium sp. in an airlift photobioreactor

Nur Liyana Abdul Rahimi *, Zahira Yaakob, Mohd Sobri Takriff

Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malavsia, 43600 Malavsia

Abstract— Microalgae are known to have better growth rate and have higher performance at fixing CO₂ compared to other photosynthetic organisms. In addition, microalgae require less space for cultivation, hence, the strategic use of photobioreactor. Cultivation of microalgae in photobioreactor is a practical approach to mitigate CO₂ emission. In this study, Characium sp. was cultured in an airlift photobioreactor to determine the effect of CO₂ concentrations on its growth. Assessment was also conducted on its biomass, chlorophyll a and lipid contents. Characium sp. presented the highest CO₂ fixation rate in 5% CO₂ with 1.222 g L⁻¹ d⁻¹. During 21-day interval cultures, the specific growth rate of *Characium* sp. at CO₂ concentrations of 5%, 10%, and 15% were 0.263 d⁻¹, 0.191 d⁻¹ and 0.181 d⁻¹ respectively. Meanwhile, its biomass productivity at 5%, 10%, and 15% CO_2 concentrations was 0.048 g L^{-1} d⁻¹, 0.038 g L^{-1} d⁻¹, and 0.028 g L^{-1} d⁻¹respectively. The highest chlorophyll a recorded was 2.82 µg/mL in 15% CO₂ enriched medium followed by 2.412 µg/mL in 10% enriched medium, and 2.284 µg/mL in 5% CO₂. Characium sp. recorded the highest lipid content of 18.63 µg/mL in 15% CO2 enriched medium followed by 6.44 µg/mL in 10% CO2 enriched medium and 4.90 µg/mL in 5% CO₂ enriched medium.

Keywords— microalgae, Characium sp., carbon dioxide;, airlift, CO₂ fixation

Introduction I.

Global warming is a global concern. To date, it is linked to abnormal phenomena such as heat waves, heavy precipitation and storms [1]. CO₂ is the principal greenhouse gas that contributes to global warming. The concentration of CO₂ has inclined radically throughout the decades since the onset of Industrial era through anthropogenic activities i.e. fossil fuel combustion, change of land use, extensive agricultural activities and global population. It is still showing an upward trend in the early 21st century due to heavy reliance on fossil fuel combustion. For the past decades, many attempts have been made to mitigate atmospheric CO₂ through various physical methods e.g. chemical based reaction and direct injection. However, the operating cost is a focal hindrance for these methods [2].

Biological method for mitigating CO_2 is very promising through the usage of both plants and photosynthetic organisms. Furthermore, it is environmentally friendly and economical. Microalgae are 10-50 times better at fixing CO₂ and have a faster growth rate than terrestrial plants [3]. Photoautothropic microalgae consume inorganic carbon and are dependent on light as source of energy [4, 5]. Furthermore, microalgae can convert CO2 into useful biomass. For 1 kg biomass, microalgae consume approximately 1.83 kg of CO₂ [6]. The biomass can be processed into valuable products e.g. biofuel, animal feed, biohydrogen, etc. [7]. In addition, microalgae can also be used in bioremediation and as biofertilizer [8,9]. Therefore, coupling of microalgal growth and CO₂ fixation is possible to offset the costs of cultivating the organism and carbon release [10].

Microalgae are normally cultivated via open system through the usage of open pond. However, this approach requires large areas and possesses multiple setbacks, including contamination, low productivity and poor control over cultivation conditions [11]. Alternatively, closed system using photobioreactors (PBRs) is shown to be effective and promising. Using vertical tubular PBRs can save up cultivation area by culturing microalgae vertically and extend the carbon dioxide residence time in the medium, and increase the efficiency of carbon dioxide utilization [12].

In this study, effects of CO₂ concentrations in airstreams on Characium sp. growth were investigated. The biomass, and chlorophyll a, and lipid contents were also studied.

Materials and methods II.

A. Microalgae culture and condition

A stock culture of Characium sp. was obtained from Faculty of Engineering and Built Environment, National University of Malaysia (UKM), Malaysia and cultivated at 27°C in modified BG-11 medium (per liter) containing 1.5 g NaNO3, 0.04 g K₂HPO4, 0.075 g MgSO₄.7H₂O, 0.036 g CaCl₂.2H₂O, 0.006 g citric acid, 0.006 g Ferric ammonium citrate, 0.001 g EDTA, 0.02 g NaCO₃, and 1 mL of trace metal solution. The trace metal (per 100 mL) contains 2.86 g H₃BO₃, 1.81 g MnCl₂.4H₂O, 0.222 g ZnSO₄.7H₂O, 0.39 g NaMoO₄.2H₂O, 0.079 g CuSO₄.5H₂O, and 49.4 mg Co(NO₃)2 .6H₂O.

Nur Liyana Abdul Rahimi, Zahira Yaakob, Mohammed Sobri Takriff Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Malaysia

Publication Date : 27 December,2014

B. Experimental system with photobioreactor

Culture cell studies were conducted in a 60 L enclosed cylindrical acrylic photobioreactor with diameter of 13.8 cm and height of 100 cm at room temperature under illumination of cool white, fluorescent light. Four fluorescent lamps of 21W were uniformly aligned around the photobioreactor. Light intensity was approximately 150 μ mol m⁻² s⁻¹ on each side. Fig. 1 presented a schematic diagram of the complete experimental setup. The illumination cycle was set at 12:12 h light/dark period. The initial pH of each culture was 7. Compressed air was mixed with CO₂ to give concentrations of CO₂ of 5%, 10%, and 15%. Cultures in the photobioreactor was performed for 21 days for microalga tested.

Figure 1: Schematic diagram of the photobioreactor for the experiments on CO_2 fixation for batch cultures. The airstream containing different CO_2 concentrations was controlled using individual digital mass flow controllers (Alicat M-series, USA) and the gas output was determined via CO_2 analyser (Quantek Instruments, USA).

c. Preparation of the inoculums

A stock culture of *Characium* sp. was incubated in an Erlenmeyer flask containing 1.8 L modified BG-11 medium at 27° C and light intensity of 30 µmol m⁻² s⁻¹. After six days, the cell density of culture was measured prior to usage. Culture was considered ready for inoculation when the OD reading is 1.

D. Batch cultivation

The photobioreactor was filled with 18 L modified BG-11. The medium was inoculated with 2 L *Characium* sp. seed culture. A mixture of air and CO_2 was obtained by mixing both air and CO_2 gas at 0.1 vvm. Concentration of CO_2 was

adjusted to 5%, 10%, and 15% CO_2 in airstreams for each air/ CO_2 mixture. Cultures were incubated for 21 days.

E. Biomass analysis

Samples were collected at an interval of 2 days for 21 days and subjected to analysis of dry weight, chlorophyll *a* content and protein content.

.E. A. Dry weight

Culture was filtered using Whatman No. 1 and dried in the oven overnight at 80°C until a constant weight could be achieved. This reading was then deducted from the preliminary filter paper weight to obtain cell weight.

E. B. Chlorophyll a content

Culture was harvested via centrifugation at 5000 rpm for 10 min. The supernatant was discarded. The pellet was resuspended with 80% acetone solution and sonicated for 30 min. The sample was left overnight at room temperature. Next, the sample was centrifuged at 5000 rpm for 10 min. The filtrate was transferred into a quartz cuvette and measured at 646 nm and 663 nm using a spectrophotometer (Hach DR2800, USA) and measured according to [13]

E.C. Lipid estimation

Culture was harvested via centrifugation at 5000 rpm for 10 min. The supernatant was discarded. The pellet was precipitated in methanol/chloroform (2:1, v/v) and sonicated for 30 min. NaCl was added to give a ratio of methanol, chloroform, and NaCl of 2:2:1. The mixture was left overnight [14]. Next, the chloroform phase was collected and evaporated in the oven at 70°C to remove organic solvent. Sulfuric acid was added to the sample. The sample was incubated for 10 min in boiling water bath. Phosphovanilin reagent was added to the sample. After 30 min, sample was measured at 520 nm. Lipid standard curve was established using cholesterol ranging from 20 μ g – 100 μ g.

E.D. Kinetic parameters

Biomass (X) values were used to calculate the maximum specific growth rate (μ max, d⁻¹) according to $\mu = ln (X_t - X_0) / t - t_o$ where X_t and X_0 are dry weight (g/L) at t and t_0 respectively [15]. The doubling time (t_d,d) was calculated as t_d = ln 2/ μ max. The maximum biomass concentration was illustrated as X_{max} (g/L). Productivity (P, g L⁻¹ d⁻¹) was derived from the equation $P = (X_t - X_0) / (t - t_o)$ where X_t and X_0 are dry weight (g/L) at t and t_0 respectively. Maximum productivity was designated P_{max} (g L⁻¹ d⁻¹).

III. Results and discussion

A. Evaluation of cell biomass

Cell density is easily determined through optical density method compared to direct cell counting and dry weight [16]. Therefore, the relationship between optical density and cell

Publication Date : 27 December, 2014

dry weight was established using linear regression. Optical density precisely predicted cell dry weight ($R^2 = 0.978$; p < 0.001). Hence, the values of optical density were used to calculate the related *Characium* sp. in each experiment according the regression established in this study.

Figure 2. Calibration curve and equation for optical density at 600 nm versus the biomass of *Characium* sp.

B. Effect of CO₂ on cell growth and CO₂ uptake

CO₂concentration is a limiting factor in photosynthesis. Thus, the concentration should be higher than a certain value to meet carbon need for algal growth and not exceed an upper limit to prevent unnecessary CO₂ loss [17]. To investigate the effect of CO₂ concentration on growth, *Characium* sp. was cultured for 21 days at room temperature and 150 μ mol m⁻² s⁻¹ and aerated with different concentrations of CO₂ at 0.1 vvm. Cultures were sampled at the beginning of stationary phase. Specific growth rate was calculated from the logarithmic phase in each experiment.

As the cells reached the stationary phase, the biomass accumulated in 5%, 10% and 15% CO2 aeration were 0.650 g L^{-1} , 0.458 g L^{-1} , and 0.498 g L^{-1} respectively (Figure 3). *Characium* sp. recorded the highest specific growth rate of 0.263 d⁻¹ when aerated with 5% CO₂. The specific growth rate dropped to 0.191 d⁻¹ when culture was aerated with 10% CO₂ followed with 0.181 d⁻¹ when the culture was aerated with 15% CO₂.

Characium sp. recorded the highest biomass productivity of 0.048 g L^{-1} d⁻¹ in 5% CO₂ followed by 0.038 g L^{-1} d⁻¹ in 10% CO₂. The lowest productivity is 0.028 g L^{-1} d⁻¹ in 15% CO₂ (Table 1).

Characium sp. illustrated the maximum rate of CO_2 fixation of 1.222 g L⁻¹ d⁻¹ in 5% CO₂ enriched medium followed by 0. 936 g L⁻¹ d⁻¹ in 15% CO₂ enriched medium and 0.861 g L⁻¹ d⁻¹ in 10% CO₂ enriched medium. Sydney et al. [18] reported that CO₂ fixation rate for *C*. vulgaris LEB-104, *B*. braunii SAG-30.81, *S*. platensis LEB-104, and *D*. tertiolecta SAG-13.86 were 0.251, 0.497, 0.318, and 0.272 g L⁻¹ d⁻¹ respectively in 5% CO₂

TABLE 1. Specific growth rate of Characium sp. at different CO_2 concentrations.

Algae sp.	CO2	Specific	Biomass	P _{CO2} ,
	(%) growth product rate(μ_{max}) (g L ⁻¹ c	productivity (g L ⁻¹ d ⁻¹)	$(g L^{-1} d^{-1})^{a}$	
Characium sp.	5	0.263	0.048	1.222
	10	0.191	0.038	0.861
	15	0.181	0.028	0.936

a Calculated from biomass productivity [2]

Figure 3. Effects of different concentrations of CO_2 aeration on the growth of *Characium* sp.

c. Effect of CO₂ on chlorophyll content

Chlorophyll *a* is a principal pigment in photosynthesis thereby acts as a precursor to microalgal growth rate. *Characium* sp. scored the highest chlorophyll *a* with 2.82 μ g/mL in 15% CO₂ enriched medium followed by 2.412 μ g/mL in 10% enriched medium. *Characium* sp. marked the lowest chlorophyll *a* content with 2.284 μ g/mL in 5% CO₂ enriched medium (Table 2). Each culture exhibited a decline in chlorophyll *a* reading after reaching exponential phase.

TABLE 2. Chlorophyll a and lipid contents of *Characium* sp. at different CO₂ concentrations.

Algae sp.	CO2 (%)	Chlorophyll a (µg/mL)	Lipid (µg/mL)
Characium sp.	5	2.284	4.90
	10	2.412	6.44
	15	2.820	18.63

International Journal of Environmental Engineering– IJEE Volume 1 : Issue 4 [ISSN 2374-1724]

Publication Date : 27 December,2014

D. Effect of CO₂ on lipid content

Characium recorded the highest lipid content of 18.63 μ g/mL in 15% CO₂ enriched medium. The content dropped significantly to 6.44 μ g/mL in 10% CO₂ followed by 4.9 μ g/mL in 5% CO₂. For each run, the lipid content tended to decline for the species.

IV. Conclusion

Characium sp. could tolerate at least 15% CO₂ level. Therefore, it can be regarded as candidate for biological CO₂ fixation. The greatest mass of CO₂ that was reduced occurred at 5% CO₂ with 1.222 g $L^{-1} d^{-1}$. Still, other limiting factors such as light intensity and CO₂ retention time need to be further investigated to obtain optimal CO₂ uptake and growth rates.

Acknowledgment

The authors would like to thank LRGS-TD-2011-UMP-PG-04 and UKM-YSD endowment for the financial aid.

References.

- [1] B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, and L. A. Meyer, IPCC, 2007: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter- governmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- [2] B. Wang, Y. Li, N. Wu, and C. Q. Lan. "CO₂ bio-mitigation using microalgae," Appl. Microbiol. Biotechnol. vol. 79(5), pp. 707-718, 2008.
- [3] J.A.V. Costa, G. A. Linde, and D. I. P. Atala. "Modelling of growth conditions for cyanobacterium *Spirulina* plantesis in microcosms," World J. Microb. Biot. vol. 16, pp. 15-18, 2000.
- [4] K. Kanhaiya, C. N. Dasgupta, B. Nayak, P. Lindbland, and D. Das. "Development of suitable photobioreactors for CO₂ sequestration addressing global warming using green algae and cyanobacteria.," Bioresour. Technol. vol. 102(8), pp. 4945-4953, 2011.
- [5] S.-Y. Chiu, C.-Y. Kao, C.-H. Chen, T.-C. Kuan, S.-C. Ong, and C.-S. Lin. "Reduction of CO₂ by a high-density culture of *Chlorella* sp. in a semicontinuous photobioreactor," Bioresour. Technol. vol. 99(9), pp. 3389-3396, 2008.
- [6] J. Doucha, F. Straka, K. Lívanský. "Utilization of flue gas for cultivation of microalgae (*Chlorella* sp.) in an outdoor open thin-layer photobioreactor," J. Appl. Phy. vol 17(5), pp. 403-412, 2005.
- [7] K. Skjånes, P. Lindblad, and J. Muller. "BioCO₂ a multidisciplinary, biological approach using solar energy to capture CO₂ while producing H₂ and high value products," Biomol. Eng. vol. 24(4), pp. 405-413, 2007.
- [8] C. González-Fernández, B. Molinuevo-Salces, and M. C. García-González. "Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry.," Bioresour. Technol. vol. 102(2), pp. 960-966, 2011.
- [9] J. R. Benemann, Biofixation of CO2 and greenhouse gas abatement with microalgae - Technology roadmap, 2003, pp. 1-29.
- [10] J. R. Benemann and E. Hughes. "Biological fossil CO₂ mitigation" Energ. Convers. Manage. vol. 38, pp. S467-S473, 1997.
- [11] S.-H. Ho, C.-Y. Chen, D.-J. Lee, and J.-S. Chang. "Perspectives on microalgal CO₂-emission mitigation systems--a review," Biotech. Adv. vol. 29(2), pg 189-198, 2011.

- [12] E. Ono, and J. L. Cuello. "Design parameters of solar concentrating systems for CO₂ mitigating algal photobioreactors," Energy vol. 29, pp. 1651-1657, 2004.
- [13] H. K. Lichtenthaler and A. R. Wellburn. "Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents," Biochem. Soc. T. vol 11, pp. 591-592, 1983.
- [14] M. Takagi and T. Yoshida. "Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae *Dunaliella* cells," J. Biosci. Bioeng. vol.101, pp. 223–226, 2006
- [15] R. R. L. Guillard. Methods for microflagellates and nanoplankton. In: Stein, J. (Ed.), Handbook of Phycological Methods. Cambridge University Press, Cambridge, pp. 80–81.
- [16] J. M. Rocha, J. E. Gracia, and M. H. Henriques. "Growth aspects of the marine microalga Nannochloropsis gaditana," Biomol. Eng. vol. 20, pp. 237-242, 2003.
- [17] L. Cheng, L. Zhang, H. Chen and C. Gao. "Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor," Sep. Purif. Technol. vol. 50(3), pp. 324-329, 2006.
- [18] E. Sydney, W. Sturm, J. de Carvalho et al. "Potential carbon dioxide fixation by industrially important microalgae," Bioresour. Technol. vol. 101(15), pp. 5892-5896.
- [19] C. Chiang, C. Lee, and P. Chen. "Utilization of the cyanobacteria Anabaena sp. CH1in biological carbon dioxide mitigation processes," Bioresour. Technol. vol. 102(9), pp. 5400-5405, 2011.

About Author (s):

Characium sp. presented the highest CO_2 fixation rate in 5% CO_2 with 0.542 g h⁻¹ and can tolerate CO_2 up to 15% or higher.

