

11

International Journal of Advances in Computer Science & Its Applications– IJCSIA
 Volume 7: Issue 1 [ISSN : 2250-3765]

Publication Date : 06 April, 2017

A Novel on-demand storage space enhancement

approach
for solving smart phone memory crunch

[Shyjumon N, Parvathi B, Sarsij Kaystha]

Abstract—The paper present a method/apparatus to solve

the memory crunch situations which are present and

probably arise during the software upgrades of the smart

phones. The present date smart phones (Android based) are

using the open source ext4 file system and our method is

working on top of the same by utilizing the existing utilities

of the ext4 file system. The approach can be utilized in two

modes and the underlying approach is same for both modes.

For making the method/apparatus we are using the re-sizing

of the file system partitions and the updation of the partition

table. This approach has scope for even changing the entire

partition layout of the smart phone device. We also

developed the algorithm to manage the partitions and we

also addressed the potential problems during the power

on/off scenarios. This approach gives easiness in user mode

and mission possible in software upgrade mode. This is not

restricted to smart phones, but can extend to the any system

runs with Linux as OS.
Keywords—Memory, OS, Android, Smart Phones, file

system, ext4, re-partitioning, software upgrade, re-size

I. Introduction
The major concern of any smart phone user will be the

memory and performance. This paper primary focus on the

memory concerns. One of the major attractive features of the

smart phone is to have the software upgrades. Due to the

increase in demand of the memory (ROM) requirements

during the software upgrade to support new features and

latest applications, the device memory re-partitioning is very

much required. Also during the normal usage of the smart

phones users wish to get more memory from the ROM.

There will lot of space available in the system memory area

of the device, which is generally reserved for future

enhancement of software by the OEM (like: Samsung). The

existing approach is to keep those statically reserved, no

matter whether the user will go for an upgrade.

The approach proposed in this paper will give an option to

the users to make use of the reserved memory in the system

partitioning and at the same time OEMs can re-claim that

when they provide the software upgrades. In this approach

we have given two modes :user mode and upgrade mode.

The user mode is solely intended for end users while the

update mode is for OEMs.
The entire solution and algorithms are built on top of

existing open source file system (ext4) and its utilities, so as
to provide ease of development and deployment.

II. Approach & Method

A. Overview of the method
The approach has two modes of operation:

 Update mode

 User mode

The first mode is used by the OEMs and the second is
for end user.

The algorithms internally used for both the modes are
almost same. The first mode works during the recovery
mode of the Linux kernel and the second will get triggered
from the running kernel (normal mode).

The key features of this method are as follows:

 This utility provides a provision to the users to
do dynamic repartitioning on the smart phones
with the help of existing utilities of the open
source ext4 file system.

 Two modes operation makes this easy to use

 Software upgrades will be easy (No space
constraints)

 Fulfillment of On-demand user space memory
expansion

 Flexibility to enhance user memory
requirements

Shyjumon N

Samsung Research Institute Noida, Noida-201301, Uttar Pradesh
India

Parvathi B

Samsung Research Institute Noida, Noida-201301, Uttar Pradesh

India

Sarsij Kaystha

Samsung Research Institute Noida, Noida-201301, Uttar Pradesh

India

12

International Journal of Advances in Computer Science & Its Applications– IJCSIA
 Volume 7: Issue 1 [ISSN : 2250-3765]

Publication Date : 06 April, 2017

Figure 1. Overview of the process in update mode

B. Approach and methodology
We are making use of the existing open source ext4 file

system utilities such as e2fsck, resize2fs, and parted lib.

As mentioned, the method has two modes and we have
completed the concept proof implementation in one mode,
which is update mode.

We have the main functional modules as below:

Computation:-

This module will tell you sequence of repartitioning
because if you want to expand the partition you have to
shrink the other partition first. Basically we will build a
dependency graph of partitions and perform topological sort
and the tasks will be performed in that order.

Generally we have three tasks in repartitioning.

 Resizing (resize2fs)

 Data shifting

 GPT (Global Partition Table) update

 For a successful repartitioning, these tasks have to be
executed sequentially in the same order.

The description of these tasks is as follows:

Resizing:-

Resizing is the major task which will enlarge or shrink
the full disk file system layout and update the superblock as
well as metadata. For this task we will be using open source
utility (resize2fs).

The Figure 2 shows the layout, the data present and free
space available in partition 3. As we can see the gray portion
of the memory in figure 2 (just below partition 3) is an
example of free space. Also the data in the partition 4 is
scattered. The right side of the figure 2 shows the
defragmented partition after resizing. All the free blocks of
each partition is segregated to contiguous locations.

Figure 2. Memory Layout change in re-sizing

Data shifting:-

Resizing will segregate the data and the free space in the
partition. However, the size of physical partition has not yet
changed. The data needs to be shifted based on the location
of the partition to which the free space should be appended.

Figure 3 shows the arrangement of the partition 4 after
the data has been shifted to the end of the partition, thereby
creating space at the beginning of the partition to be added
to partition 3, just above it.

Figure 3. Memory Layout change in data shifting

13

International Journal of Advances in Computer Science & Its Applications– IJCSIA
 Volume 7: Issue 1 [ISSN : 2250-3765]

Publication Date : 06 April, 2017

GPT Update:-

After Data shifting operation, the GPT (Global Partition
Information Table) will be updated to change the physical
partition layout of the device. Figure 4 shows the updated
physical partition layout

Figure 4. Memory Layout change when GPT update

C. Implementation:
The dynamic re-partitioning is carried out in 4 stages.

1. Stage 1: Validation of new Partition info

2. Stage 2: Recovery 1

3. Stage 3: Recovery 2 (Only for update mode)

4. Stage 4: Bootloader

Stage 1: New partition layout is received can be either for a
software upgrade or as per the end user request, means the
end user wishes to get more space in one of the partitions,
mostly the user data partition. The new partition layout is
then validated using the PIT (Partition Information Table)
Parser utility in this stage. On successful verification, the
appropriate recovery commands are written in the
/cache/recovery/command file for OS upgrade mode or end
user request mode. In the earlier case, 2 commands – one for
repartition and other for applying the delta – are written. In
the latter case, only one command - to repartition - is
written. These commands will be executed by the init
process when booted in recovery.

Figure 5. Implementation stages of repartitioning during OS upgeade.

Stage 2: In this stage, the device will boot in recovery and

are execute only repartition commands. After successfully

executing the repartition commands, in case of user

triggered mode, a flag is set to indicate the bootloader to

update the new partition layout in GPT. However, if the

request is for OS upgrade, the device is rebooted in recovery

mode (recovery 2) after successfully repartitioning.

In case of user triggered mode, after stage 2, a flag is

updated for the bootloader stage and then device will be

booted to normal mode.

14

International Journal of Advances in Computer Science & Its Applications– IJCSIA
 Volume 7: Issue 1 [ISSN : 2250-3765]

Publication Date : 06 April, 2017

Figure 6. Implementation stages of reaprtitioning on user demand.

During the boot to normal mode, the bootloader stage
acts to update PIT & GPIT tables with new partition
information and user can enjoy the new created space
seamlessly.

Stage 3: Recovery 2, this stage only applicable for the
OEM triggered software update mode, this mode is designed
to satisfy the OEM’s requirements to update the new
software on top of the existing software. This stage booting
the bootloader acts to bridge the old partition information &
new partition information table.

Stage 4: Bootloader Agent module, this module plays a
vital role (after Stage 1 for user triggered mode and after
Stage 2 (or rather coupled with Stage 2) OEM mode). The
major duty is to check for the partition change update flag
reading and accordingly modify the partition information
table contents. Make the system ready with new layout of
partitions.

All these stages plays in very much in the system level,
any error in any stage can make the situation of making the
mobile computing device dead forever. So every stage is
incorporated with an error recovery system. The error
recovery system is designed in two dimensional, one is to
recover from the functional failures in the said module‘s
functionality. The second dimension is the power failure
recovery. In any stage or any time if the power is cut off due
to lack of battery or due to malfunction of the power

controller, the power recovery system will act and makes the
system in-tact.

The basic philosophy of the recovery system is to retain
the system, from where we started the process.

We have done extensive tests on our apparatus to make
sure the recovery system is acting well, which include some
set of automated robotic level testing process. As a result we
could able to handle all such cases and make a robust system
as our proposed apparatus.

D. Future Scope
The major limitation of this work is performance aspect.

If the data is large in the partition where in the re-
partitioning is performing there is significant performance
problems. To improve the performance in data shifting, we
recommend incorporating the compression techniques to this
apparatus.

The proposal can be extended to other file systems like
B-tree file system, where functionalities like on-line re-size
and snap shot are available. This kind of file system can
overcome the above mentioned overhead on performance
easily. We have explored the same in B-tree file system and
able to achieve significant improvement in performance.
However present android smart phones are using the ext4
file system so we restricted our work to ext4 file system.

E. Conclusions
The approach and methodology mentioned in this paper

is implemented for concept proofing and we could
successfully complete achieve desired results. This is now
in-progression for commercialization. This will be a handy
method for all the normal users and OEMs.

Acknowledgment
This work had been done at Samsung R&D Institute

India Noida. We thank our colleagues, Mr. Kashp Chawla
and Mr. Tarun for helping us. We also want to thank all
System Memory team members for the support they gave us.
We would also like to thank our organization for creating
such an informative atmosphere and helping us in whatever
way they could.

We also wish thank, our fellow members in the Samsung
R&D China, Nanjing for their proof of concept work on the
command line utility for partition parsing. Our work taken
their work reference to make one of the module in this
proposed apparatus.

F. References

[1] https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guid
e/ext4grow.html

[2] http://blog.fpmurphy.com/2011/10/fedora-16-gpt-grub2-bios-boot-
partition.html?output=pdf

[3] Meaza Taye Kebede, Performance Comparison of Btrfs and Ext4
Filesystems, submitted in Oslo And Akersus University College Of
Applied Science, 2012

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ext4grow.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ext4grow.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ext4grow.html
http://blog.fpmurphy.com/2011/10/fedora-16-gpt-grub2-bios-boot-partition.html?output=pdf
http://blog.fpmurphy.com/2011/10/fedora-16-gpt-grub2-bios-boot-partition.html?output=pdf

15

International Journal of Advances in Computer Science & Its Applications– IJCSIA
 Volume 7: Issue 1 [ISSN : 2250-3765]

Publication Date : 06 April, 2017

G. About Author (s):

Shyjumon N did his B.Tech in Electrical &

Electronics Engineering from Govt.

Engineering College, Thrissur, Kerala in

the year of 2002. He worked with Various

R&D centers such as Samsung, Toshiba,

Cranes, and Otwo in the field of Embedded

Systems for the development of handheld

devices. He is having more than 13 years

of experience in the Linux Kernel and

device drivers and also worked on different

Bootloader Developments. He is

specialized in BSP & Peripheral bus

technologies such as SDIO, USB and

presently working on Linux Kernel

optimizations.

Sarsij Kaystha did his M.Tech in Software

Engineering from Moti Lal Nehru National

Institute of ‘Technology, Allahabad in the

year of 2010. He worked with Samsung

R&D centers in the field of File System for

the development of handheld devices. He

is having more than 5 years of experience

in the Linux Kernel. He is specialized in

Filesystem and database for Android.

Parvathi Bhogaraju has graduated with

master’s degree in Process Control and

Instrumentation from National Institute of

Technology, Tiruchirappalli, in the year

2007. Before joining Samsung, she has

worked with R&D centers of Toshiba and

Emerson. She has more than 8 years of

experience in device drivers and filesystem

development in various OSes, including

Linux. She is specialized in Software and

Hardware interfacing of various embedded

memory technologies and Filesystems. She

is currently working on optimizing the

Linux Block Layer for Android phones.

