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Abstract - In large reservoirs, the water column alters in-situ 

stress state along an existing fault or fracture. The load of 

the water column is often so intense that it can significantly 

change the stress state leading to induced seismicity. 

Various empirical and calculative techniques are in place to 

predict the probable occurrence and magnitude of such 

seismic variations. This paper utilizes the Relevance Vector 

Machine (RVM) approach for prediction of Magnitude (M) 

of reservoir induced earthquake. RVM is developed in 

probabilistic framework. It produces sparse solution. RVM 

uses two input parameters namely depth of the reservoir 

and the other being a comprehensive parameter 

representing reservoir geometry for prediction of M.  
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I.  INTRODUCTION 

Since the first instance of reservoir induced seismicity 

in Lake Mead in the early 1900’s [1] reservoir induced 

seismicity (RIS) studies have been carried out in various 

parts of the world. When a dam is built and the reservoir 

filled with water the existing fault structure is subjected 

to varied stress and hence this often leads to movement 

along the fault plane giving rise to earthquakes [2]. 

The prediction of reservoir induced seismicity is 

important because it gives us the seismic potential of a 

dam after it has been built. Earlier artificial neural 

networks, statistical prediction model, fuzzy mathematics 

and gray system model have been used successfully for 

the prediction of reservoir induced seismicity [3]. The 

results from such models give us the magnitude (M) of 

the induced earthquake to varied degree of accuracy with 

the neural network method of prediction holding greater 

significance. 

Radial basis functions (RBF) have also been utilized 

for the estimation of reservoir induced seismicity but 

although RBF networks are easy to train, when training is 

finished and it is being used it is usually slower [4]. 

 In our study, we have used RVM to predict the 

magnitude of the earthquake induced by the reservoirs. 

RVM was introduced by Tipping [5] in 2001 and since 

then it has been used extensively in various civil 

engineering disciplines, namely, geotechnical engineering 

and water resource engineering [6-8]. RVM exploits a 

probabilistic Bayesian learning framework to derive an 

accurate prediction model. It achieves a sparse 

representation of the approximating function by 

structuring a Gaussian prior distribution. This is achieved 

by specifying independent Gaussian priors for each of the 

coefficients. Further comparison with conventional RBF 

and regressional analysis model is shown. 

II.  RELEVANCE VECTOR MACHINE 

RVM produces sparse solutions using an improper 

hierarchical prior and optimizing over hyper parameters 

[9]. 

Let D={xi, yi, i=1, . . ., N} be a dataset of observed 

values.  

where xi = input, yi = output, xi ϵ R
d
 and yi ϵ R.  

In this study, the input parameters are comprehensive 

parameter representing reservoir geometry (A) and height 

of the reservoir (B). Therefore, x = [A, B]. The output of 

the RVM model is magnitude of the earthquake induced 

by the reservoir. So, y = [M]. The output can be 

expressed as the sum of an approximation vector, z = 

(z(x1), . . ., z(xN))
T
, and zero mean random error (noise) 

vector, ε = (ε1, . . ., εN)
T
 where εn ~ N(0,σ

2
) and N(0,σ

2
) is 

the normal distribution with mean 0 and variance σ
2
. So, 

the output can be expressed as: 

                  (    )      (1) 

where ω is the parameter vector.  

Let us assume 

 
                   

               (2) 

where N(z(xn), σ
2
) is the normal distribution with mean 

z(xn) and variance σ
2
. We can express z(x) as a linearly 

weighted sum of m nonlinear fixed basis function, 

{Φj(x)|j=1, . . ., m}: 

        ∑          

 

   

 (3) 

The likelihood of the complete data set can be written 

as: 
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where y = (y1, . . .,yN)
T
 ,   = ( 0, . . .,  N) and 

   [
                 
   
                 

     
         
  
         

] (5) 

where K(xi, xn) is a kernel function. 
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In order to prevent over fitting, prior Automatic 

Relevance Detection (ARD) is set over weights. 

         ∏     

 

   

    
    (6) 

where α is a hyperparameter vector. It controls the 

deviation of each weight from zero [10]. Applying Bayes’ 

rule, the posterior over all unknowns could be computed 

given the defined non-informative prior distribution:  

         ⁄  

  
    ⁄               

∫     ⁄                       
 (7) 

It is hard to find full analytical solution of this integral. 

Thus, posterior distribution over the weights can be given 

by: 

              
    ⁄         ⁄  

    ⁄     
 (8) 

This results in a multi-variate Gaussian distribution 

resulting from the above mentioned posterior distribution: 

 
                   (9) 

where mean(μ) = σ
-2

 ΣΦ
T
y 

and covariance (Σ) = (σ
-2

Φ
T
Φ + X) 

with diagonal X = diag(B0, . . ., BN). 

Maximizing the term p(y/α, σ
2
) will give uniform 

hyperpriors over α and σ
2 

           ∫    ⁄         ⁄    
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(10) 

This maximizing term is known as “evidence for 

hyperparameter”[11]. Outcome of this optimization is 

that many elements of α will become infinite and 

therefore, there will be very few non-zero weights. These 

weights are considered as relevance vectors. Now, the 

equation of RVM will finally be: 

 

     ∑        

   

   

 (11) 

where nrv are number of relevance vectors. 

In our study, RVM methodology has been used to 

calculate magnitude of the reservoir induced seismicity. 

The magnitude of the earthquake (M) can be determined 

by: 

 
              (12) 

The comprehensive parameter (E) has been defined as: 

    
  

 
 (13) 

where S, H and V are reservoir surface area, maximum 

reservoir depth and reservoir capacity respectively.  

III.  APPLICATION 

RVM makes use of Gaussian Kernel function. It 

requires datasets to make a model and then test its 

efficiency. During formulation the datasets were divided 

into two sets: 

A.  Training datasets 

These are required for the construction of RVM model. 

For this study, we have used 24 datasets for the 

construction of the model. Table 1 shows the normalised 

datasets used to carry out the method. 

B.  Testing datasets 

This is used to verify the developed RVM. The 

remaining 6 datasets were used as testing datasets. 

All the datasets were normalised between 0 and 1. 

 

TABLE 1 

NORMALISED DATASETS USED FOR RVM 

Height (H) 
Comprehensive 
Parameter (E)  

Magnitude 
(M) 

0.162297 0.475655 0.325581 

0.208073 0.258427 0.325581 

0.362047 0.47191 0.604651 

0.253849 0.494382 0.674419 

0.607574 0.441948 0.674419 

0.320433 1 1 

0.570121 0.779026 0.325581 

0.037453 0.089888 0.395349 

0.31211 0.988764 0.953488 

0.586767 0.505618 0.651163 

0.212235 0 0.465116 

0.06367 0.606742 0.837209 

1 0.003745 0.55814 

0.661673 0.378277 0.837209 

0.145651 0.217228 0.604651 

0.449438 0.498127 0.209302 

0.403662 0.389513 0.325581 

0.077403 0.179775 0.209302 

0.245526 0.707865 0.767442 

0.216396 0.516854 0.930233 

0.195589 0.40824 0.604651 

0.151061 0.269663 0 

0.349563 0.265918 0.162791 

0.020807 0.265918 0.209302 
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0.070745 0.539326 0.255814 

0.122347 0.599251 0.55814 

0 0.370787 0.162791 

0.022056 0.539326 0.627907 

0.258011 0.123596 0.27907 

0.258011 0.123596 0.255814 
 

IV.  RESULTS AND DISCUSSION 

The final equation constructed by the RVM in terms of 

weights (w) and width (σ) with the help of 24 training 

datasets to calculate M is as follows: 

   ∑   
               

   

  

   

 (14) 

The Fig. 1 shows the relation between the original 

training datasets and RVM predicted datasets. As it is 

shown the predicted datasets are identical to the original 

datasets with a good coefficient of correlation (R). 

Coefficient of correlation (R) is the most important 

criteria to determine the performance of RVM. Fig. 2 

shows the relation between original testing datasets and 

RVM predicted datasets. The identical values validate the 

performance of the RVM. Another important factor to be 

discussed is the weights of the training datasets. In Table 

2, we can see that variation of the values is only marginal. 

It shows the sparseness of the RVM. This shows that the 

performance function will be efficient and smooth. 

 

 
Fig.1 Performance of training datasets 

 

 
Fig. 2 Performance of testing datasets 

TABLE 2 

VALUE OF WEIGHTS 

Height 
(H) 

Comprehensive Parameter 
(E)  

Weights 
(w) 

84 3.18 0 

95 2.6 0 

132 3.17 0.167 

106 3.23 0.741 

191 3.09 0 

122 4.58 0.9706 

182 3.99 0.2342 

54 2.15 0.2628 

120 4.55 0 

186 3.26 0.4913 

96 1.91 0.3954 

60.3 3.53 0.7826 

285.3 1.92 0.5051 

204 2.92 0.7344 

80 2.49 0.3393 

153 3.24 0 

142 2.95 0.1833 

63.6 2.39 0 

104 3.8 0.7098 

97 3.29 0 

92 3 0.1169 

81.3 2.63 0 

129 2.62 0 

50 2.62 0 
 

But the marginal difference between the original 

testing values and RVM predicted testing values is due to 

over training of the performance function. Therefore, to 

get better performance of the testing datasets, over 

training should be avoided. 
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In Fig. 3, the Coefficient of correlation (R) of RVM is 

compared with that of the conventional statistical 

approach, i.e., regression analysis and that of RBF.  

 

 

Fig. 3 Coefficient of correlation 

V.  CONCLUSION 

This study shows the efficient RVM for determination 

of magnitude of the earthquake generated due to the 

stresses developed in the reservoir. The final result has 

been compared with the linear regression model and 

RBF. The similar results by both RVM and RBF suggest 

that RVM is equally acceptable than RBF. The proposed 

RVM is not a replacement of RBF but just an alternative. 
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