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Abstract— Direct Human Input (DHI) is an input 

methodology for Human Machine Interfaces (HMI). Use of DHI 

eliminates physical input devices as input data is collected 

directly from the signals generated by the human body. Various 

varieties of DHI exists of which Electromyogram (EMG) is found 

to have properties that makes it readily applicable. In this work, 

the capability of EMG to detect facial expressions of the user has 

been utilized to create a generalized interface that processes 

EMG signals into machine commands in accordance with the 

user’s facial expressions. The interface is essentially a 

combination of dimension reduction and classification algorithms 

that classifies EMG signals into facial expressions to activate 

machine commands correlated with the estimated facial 

expression. Linear Discriminant Analysis and Support Vector 

Machines have been used for dimension reduction and 

classification respectively. The interface has been found to 

perform satisfactorily with a classification accuracy over 99%. 

Case studies were conducted to verify the performance of the 

proposed interface in real-time applications and the performance 

was found to be satisfactory.  

Keywords— Human Computer Interface, Direct Human Input, 

Electromyogram, Facial Expressions 

I. INTRODUCTION 

In the realm of Human Machine Interfaces (HMI), Direct 
Human Input (DHI) is relatively a newcomer and hence is 
sparsely applied. However, some Virtual Reality (VR) systems 
have adopted DHI [1]. DHI largely differs from all other kinds 
of inputs to an interface in that its format is native to the 
human body. Here, the data collected directly from the signals 
generated by the human body serve as the input [1]. Hence the 
need of a physical input device is eliminated as the user 
himself serves as the source of input. The common forms of 
DHI for HMI are motion, speech, electromyogram (EMG) and 
electroencephalogram (EEG). Motion inputs are captured by a 
video camera and the video is processed to identify specific 
commands which are pre-correlated with specific movements 
or gestures. Systems that utilize this input are widely 
commercialized. Microsoft’s Xbox Kinect™ [2] is one such 
system. Speech has been successfully utilized as an input for 
HMI [3, 4] but it suffers from its inherent disadvantages 
particularly when used by people of different ethnic groups 
with language barrier. Further the interface must be capable of 
discerning commands from casual conversation. 
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Numerous works have been conducted to aid handicapped 
patients in locomotion using electroencephalogram (EEG) as 
input [5-7]. HMI that utilized EEG are termed as Brain 
Computer Interfaces (BCI). Here, the potential distribution on 
the scalp of the user is monitored for unique patterns 
pertaining to discrete input commands. These systems need 
costly amplifiers and the cheap ones will naturally degrade 
classification accuracy. BCI that use mu rhythm (motor 
imagery – imagining a physical limb movement) to get input 
commands are indeed successful [8] up to some extent but 
hinder when the user actually uses his limbs for physical 
locomotion. BCI needs highly controlled environments and the 
number of classes (discernable input commands) is very low. 
Most BCI are synchronous or cue based (analogous to 
synchronous circuits waiting for a clock pulse to act). This 
forces the user to express a trained thought only during a small 
window of time just after the trigger. This inhibits the 
capability of the user to have a free will. Further, identified 
potential distribution patterns on scalp may drift with external 
factors like temperature and time.  

In spite of these issues, Göhring et al. [9] report successful 
usage of cheap commercial EEG gaming headsets to steer a 
real car using proprietary classification algorithms developed 
by emotiv systems [10]. But they do admit that the accuracy is 
not high enough to steer the car in open traffic. Even though 
BCI could be perfected in the near future BCI illiteracy is a 
much bigger problem to solve [11] as about 30% of human 
population could not be trained to use BCI. 

Electromyogram (EMG) that captures muscle actuation is 
a viable DHI for HMI. Though high level motion inputs can 
easily be captured by a camera, subtle muscular activity like 
eye movements and facial expressions can be identified from 
EMG with high reliability. EMG signals are much stronger 
than that of EEG and hence with minimal training, EMG 
signals can be used for high speed real-time classification of 
muscular actuations into discrete inputs. Though EMG 
patterns are different for each person they exhibit minimal 
response to external factors. These features of EMG intrigued 
the authors to probe the applicability of EEG as a DHI for 
general HMI. 

II. INTERFACE DESIGN 

It has been intended to design an interface that takes facial 
expression of the user as input to give corresponding output 
commands to the machine of interest. The facial expression of 
the user would be identified by processing the EMG signals 
acquired from the user.  
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TABLE I.  FACIAL EXPRESSIONS BEING CONSIDERED 

Facial 

Expression 
Descriptive Action 

 

Left Eye being Winked 

 

Right Eye being Winked 

 

Eyebrows being Raised  

 

No Expression  

 

The interface is designed to identify the facial expressions 
reported in Table 1.  

A. Equipment 

EMG signals were recorded using a commercially 
available emotiv EPOC neuroheadset [10]. Emotiv EPOC has 
been designed to record both EEG and EMG signals and is an 
easily available off the shelf solution for recording EMG 
signals. Sensors at 8 locations were monitored to predict the 
facial expression of the user. The eight locations (based of the 
international 10-20 nomenclature for EEG) are AF3, AF4, F7, 
F8, FC5, FC6, T7 and T8. The potential difference between 
each sensor at the 8 locations and the reference electrode are 
transmitted wirelessly from the neuroheadset to the computer. 
The eight channel data is then processed by the signal 
processing algorithm. 

B. Analysis of EMG Signals 

The way in which data is encoded in a signal largely 
determines the signal processing methodology. EMG signals 
are electric signals associated with muscle contraction. Central 
nervous system (CNS) is known to co-ordinate all the muscle 
contractions. An action potential (AP) generated by CNS 
traverses along nerves to reach muscles which stimulates 
contraction. The strength of muscle contraction has a direct 
correlation with the frequency of this stimulation [12]. Thus 
the major frequency component of the EMG signal (composed 
of APs) is a reliable measure of muscle contraction. 

C. Signal Processing Algorithm 

The signal processing algorithm is essentially a 
classification algorithm that classifies independent variables 
calculated from EEG signal into facial expressions. It then 
feeds the machine with the command correlated with the 
estimated facial expression. As the frequency domain of EMG 
signals is sensitive to changes in facial expressions, the power 
values of different frequency bands in the frequency domain 
of EMG signals were considered as independent variables for 
classification. EMG signals were transformed from the time 

domain into frequency domain using Fast Fourier Transform 
(FFT) [13] after applying a Hanning window. Power value 
quantifies the amount of signal with frequency within the 
specified frequency band. The power values of different 
frequency bands were estimated using (1). 
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Where, 
h  = higher frequency limit 
l  = lower frequency limit 
N  = number of discrete values over which FFT is 

performed 
c  = frequency domain values 
i  = index 
Sf  = sampling frequency 

 
Generally the number of independent variables calculated 

is much higher than those actually required for classification 
so that a much larger group of users can be supported by the 
algorithm. Hence, dimension reduction is applied to extract 
user specific variables that contain almost all the data required 
for classification of signals for the particular user. This subset 
of independent variables is termed as features. These features 
serve as inputs for classifier algorithms that perform 
classification.  

The proposed algorithm has two phases namely the 
training phase and the working phase as depicted in Fig 1. The 
training phase develops a suitable dimension reduction 
methodology and classifier design for the current user. The 
working phase, by using the dimension reduction methodology 
and the classifier design developed in the training phase, 
converts the EMG signals of the current user into machine 
commands. Thus the training phase of the algorithm must be 
executed once for every new user before executing the 
working phase. This signal processing algorithm performs 
dimension reduction by Fisher’s Linear Discriminant Analysis 
(LDA) and the classification is performed by a Support Vector 
Machine (SVM) with radial basis kernel. The training phase 
requires recordings of EMG data associated with each facial 
expression of the user, for whom the algorithm is trained. For 
each facial expression, the algorithm records EMG data from 
all the eight locations (8 channel EMG) for 16 seconds. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Signal Processing Methodology 
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It has been observed that the frequency band sensitive to 
facial expressions is 25Hz to 40Hz. To monitor variations 
within this band it has been divided equally into three bands. 
Hence the powers in these three bands were considered as 
independent variables. From each 16 second data, the 
algorithm determines independent variables in eight windows 
(one for each channel) of width 0.5 second, thus contributing 
24 (3 variables for each of eight channels) independent 
variables that characterize the facial expression of the user at 
that particular second. The same process is repeated several 
times by rolling the window forward by 0.125 second till the 
entire 16 second data is exhausted. This procedure results in 
four classes of 24 dimensional data with each class associated 
with a particular facial expression. 

LDA linearly combines these 24 independent variables 
into a new variable such that the new variable is a better class 
discriminator.  As LDA is supplied with the details regarding 
the class to which each 24 dimensional data belongs, it 
optimizes the linear combination in such a way that the new 
variable has minimum within-class variance and maximum 
between-class variance. The maximum number of these new 
variables is one less than the number of classes [14]. As there 
are four classes, three new variables can be extracted thus 
reducing a 24 dimensional data into a 3 dimensional data. 
These three variables serve as features for classification. The 
co-efficient of the three linear combinations that define the 
three new variables can be consolidated into a single matrix 
termed as transformation matrix. The 24 dimensional data, 
when post-multiplied by this transformation matrix yields the 
three dimensional data. This transformation matrix is user-
specific and is used by the algorithm for dimension reduction 
in the working phase. The algorithm uses the same 
transformation matrix to transform the four classes of 24 
dimensional data associated with the training phase into four 
classes of 3 dimensional data which would serve as the 
training data set to train the classifier. 

As the class details associated with the three dimensional 
training data set is known, the SVM identifies the optimal 
hyperplane that linearly separates two classes of multi-
dimensional data [14]. If the classes are not linearly separable, 
the radial basis kernel transforms the data into a higher 
dimension till linear separability is achieved. This 
identification of hyperplane is termed as classifier training. As 
a hyperplane cannot linearly separate more than two classes, 
all possible hyperplanes between any two of the four classes 
are identified thus identifying six (4C2) hyperplanes or 
essentially training six binary classifiers. 

Once the training phase is executed, the algorithm switches 
to the working phase. The working phase of the algorithm 
records packets of EMG data in real-time. Each packet of data 
contains EMG data of length 0.5 second. The algorithm 
calculates the 24 independent variables associated with the 
EMG data packet and dimensionally reduces it to 3 features 
using the transformation matrix developed during the training 
phase. These 3 feature values are supplied as a three 
dimensional data point to the classifier. Based on the side of 
the hyperplane to which the point lies, the six classifiers 
provide six different predictions of the class to which the 3 
dimensional point belongs. The six predictions would be 

considered as votes and the facial expression associated with 
the winning class is considered to be the current facial 
expression of the user. Based on this predicted facial 
expression the algorithm sends the associated command to the 
machine being interfaced. 

III. RESULTS AND DISCUSSION 

The signal processing algorithm of proposed HMI has been 
checked in real-time and the results are reported in Table 2. In 
this context, accuracy refers to the ratio of the number of 
attempts during which the facial expression is correctly 
interpreted into the corresponding machine command to the 
total number of attempts made. 

TABLE II.  FACIAL EXPRESSIONS BEING CONSIDERED 

Facial Expression 
Classification 

Accuracy % 

Smoothened 

Accuracy % 

Left Eye being Winked 97.24 99.92 

Right Eye being Winked 95.87 99.82 

Eyebrows being Raised  93.94 99.63 

No Expression  93.39 99.56 

 

The classification accuracies signify the performance of 
the components of signal processing algorithm and in turn the 
performance of HMI. Though the accuracies are greater than 
90%, it is impossible to use them in real-time application as 
they still lead to numerous misclassifications.  To increase the 
accuracies smoothening techniques can be adopted. It could be 
programmed in such a way that only two same consecutive 
facial expression predictions can evoke the associated 
navigational command. The improbability of two consecutive 
misclassifications has also been reported in Table 2 as 
“Smoothened Accuracy” which is high enough for real-time 
applications. This result supports the fact that the proposed 
interface is a viable HMI that processes EMG input. 
Smoothening is done at the cost of time lag between user 
action and machine’s response for command. 

IV. CASE STUDIES 

As the performance of the proposed interface has been 
satisfactory, the authors performed case studies by using the 
interface in variable applications to verify its applicability. 
Three different case studies were made by employing the 
interface for navigation in virtual environment, orienting a 3D 
object in a Computer Aided Design (CAD) environment and 
to teleoperate an electric car. 

A. Navigation in Virtual Environment 

The physical input device that generally provides the 
computer with the navigational commands has been replaced 
with the proposed interface. Vizard Software Toolkit [15] has 
been used to create a virtual environment of an Italian Palazzo 
for the study. Vizard SDK [16] has been used to create the 
software interface to process EMG signals into navigational 
commands. The correlation between the facial expression and 
the navigational commands are reported in Table 3. 
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TABLE III.  FACIAL EXPRESSIONS AND CORRESPONDING NAVIGATIONAL 

COMMANDS 

Facial Expression Navigational Command 

Left Eye being Winked Turn Left 

Right Eye being Winked Turn Right 

Eyebrows being Raised  Go Straight 

No Expression  Do not move 

 

The performance of the interface has been found to be 
satisfactory. 

B. Orienting 3D Object 

Instead of using a mouse to orient a 3D model in a CAD 
environment, the proposed interface has been employed in this 
study. NX Unigraphics 7.0 [17] has been selected as the CAD 
package to perform testing as it provides NX Open 
Application Programming Interface (API). The software 
interface that maps facial expressions into orientation 
commands has been programmed using NX Open API through 
C++. The orientation commands are mono directional rotation 
commands about the three axes of the co-ordinate system. The 
mapping between the facial expression and orientation 
commands is reported in Table 4. 

TABLE IV.  FACIAL EXPRESSIONS AND CORRESPONDING ORIENTATION 

COMMANDS 

Facial Expression Navigational Command 

Left Eye being Winked Counter clockwise rotation about Z axis 

Right Eye being Winked Counter clockwise rotation about Y axis 

Eyebrows being Raised  Counter clockwise rotation about X axis 

No Expression  Do not move 

 

The users were able to easily orient the 3D models but the 
limited number of discernable facial expressions proved to be 
a problem when bidirectional rotation is preferred. 
Bidirectional rotation needs seven different discernable facial 
expressions. 

C. Teleoperating an Electric Car 

An attempt has been made to teleoperate an electric car 
using the proposed interface. The user interacts with a server 
computer that contains the proposed interface programmed as 
a software. The navigational commands extracted by the 
server would be communicated to the on-board computer in 
the electric car through TCP/IP sockets over the Wide Area 
Network (WAN). A Raspberry Pi Model – B [18] computer 
serves as the on-board computer that receives the navigational 
commands and correspondingly steers the electric car. The 
facial expressions and the corresponding navigational 
commands are similar to the mapping used for navigation in 
virtual environment tabulated in Table 3. The electric car used 
to perform the case study is shown in Fig. 2. The general 
performance of the interface was found to be satisfactory in 
this case but the time lag induced by signal processing 

algorithms resulted in slow response which may at times be 
detrimental for this application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Electric Car with Onboard Computer 

These case studies prove the applicability of the proposed 
interface and in turn the applicability of EMG as DHI. 

V. CONCLUSION 

Electromyogram has been identified as a viable candidate 
for Direct Human Input for Human Machine Interface. An 
interface that processes the EMG signals into commands for 
the machine has been developed. Three case studies that have 
been carried out to access the applicability of the proposed 
interface gave acceptable results. 

In the future the authors intend to improve the signal 
processing algorithm that constitute the interface so that time 
lag is reduced and more number of facial expressions could be 
discerned thereby expanding the number of possible 
applications of EMG as DHI. 
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