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Abstract: Environmental pollution is worsening due to 

human activities. Biosensors are an alternative analytical tool to 

eliminate pollutants in environment. Through the advancement 

of recombinant technology, genetically modified microbes are 

now available to be integrated into a biosensor design. The 

microbes have the ability to produce signals which are not 

available in the wild type counterpart with certain modified 

characteristics. In this paper, the application of the genetically 

modified microbes has been discussed. The performance of the 

genetically modified microbes in biosensors has been focused and 

comparison has been done with the wild type counterparts. The 

future development of biosensors with recombinant microbes 

require more research in the areas of sensitivity, specificity, and 

the ability of biosensors to operate under stressed environment 

are discussed as well. 

I.Introduction  
Biosensors are commonly defined as a combination of 

biological component, transducer, and electronic reader. 
Biosensor is an analytical device used to observe changes in 
biological reactions into an electrical signal output [1].The 
principle component of a biosensor is its bio-recognition 
component, and that component can unequivocally 
collaborate with its target analyte. Followed by the 
installation of the transducer, it creates responses that can be 
examined and deciphered through information produced by 
electronic reader [2]. The collaboration of bio-recognition 
component with its target analyte is capable to capture the 
changes in the pH, temperature, light discharge, electron 
exchange and more [3].  

Whole cells, especially microbes have been widely used 
in the development of biosensors in environmental 
applications. The whole cells have been regularly proposed 
as bio-recognition components as a part of numerous 
applications is the use of whole cell organism, especially the 
microbial cells [4-7]. As of late 80‟s, recombinant 
microorganisms have been highly preferred for its role in 
two important bearings in the improvement of biosensor 
toxicity bioassays, which known as "lights off" and "lights 
on" tests. The concept is an extension of the generally used 
microbial bioassay, based upon estimation of the reduction 
in light illumination. For example, the most commonly used 
bacterium for this purpose is the wild-type luminescent 
bacterium Vibrio fischeri [8]. Various types of 
microorganisms were also adjusted to constitutively 
luminescent and accordingly to serve as potentially reliable 
markers for toxicity bioassay. As an example of 

recombinant bacteria, Escherichia coli Hb101 which 
harbours luxCDABE of V. fischeri was immobilized in 
polyvinyl beads [8]. Another bacteria which is the 
Pseudomonas fluorescens also used the same methodology. 
Furthermore, the cyanobacterium Synechocystis Pcc6803 
with the luc gene from the firefly Photinus pyralis, also 
explored in this methodology [8]. Apart from that, various 
other microorganisms were modified to give the best in 
interest to develop a higher end luminesce biosensor [8]. 

Many human activities caused pollution from point 
sources (e.g. modern industrial effluents, refining wastes) 
and non-point sources such as the solvent salts, insect sprays 
and pesticides [9]. These tainting substances have different 
levels of impact on the environment and life forms. Past 
studies confirmed that contamination has severely lowered 
the quality of arable lands [10] while deteriorating the 
quality of water [9].  

Highly recognized devastating heavy metals that 
contaminates environment includes As, Cu, Cd, Pb, Cr, Ni, 
Hg and Zn [9]. These inorganic pollutants are released into 
environment through industrial, agricultural, and the 
disposal of domestic wastes. Meanwhile organic pollutants 
are the compound that mainly consists of hydrogen and 
carbon atoms. These organic pollutants include compounds 
originate from pharmaceuticals, pesticides, food additives 
and industrial byproducts [11]. Wastewater from various 
industries, livestock and agriculture are the main resources 
of these organic pollutants [11]. These pollutants affect the 
ecosystem and have numerous toxic effects to human well-
being. An incident occurred in 1968, where more than one 
thousand people ate polychlorinated biphenyls (PCBs)-
contaminated rice oil in Yusho, Japan. Ten years later in 
1979, a similar incident occurred in Yucheng, Taiwan [13]. 
Li et al. [14] reported that the affected people showed an 
increased mortality patterns 30 years after the exposure. 
Organic pollutants such as PCBs are persistent in the 
environment where it require few centuries for degradation.   

In this review paper, the focus is on the effective 
applications of genetically modified microorganisms in 
optical biosensor for environmental pollutants detection. 
Apart from discussing successful applications of genetically 
modified microorganism biosensor, comparisons were also 
made with wild-type microorganism biosensor on based on 
different variables.  
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II.Genetically modified microbial 
biosensor and the wild type 

microbial biosensor for metal 
pollutant detection 

The development of genetically modified microbes for 
biosensor applications has been widely reported. For 
example, E. coli XL1-Blue with zraP and cusC promoters 
fused with rfp and gfp reporter genes were able to detect the 
copper and zinc down to of 5.10 mg/L (32 μM) and 2.59 
mg/L (19 μM) respectively. This is below the recommended 
toxic levels for zinc and copper provided by the guidelines 
in the United States Environmental Protection Agency 
which is 5 mg/L for zinc [15]. E. coli MC1061 with 
merR/Pmer gene and luxCDABE reporter gene were able to 
detect mercury (II) at the level of 1 x 10

-3
 mg/L [16] and 3 × 

10
-5

 mg/L [17]. These lowest limit detections were lower 
than permissible level set by United States Environmental 
Protection Agency (EPA) in which by default was 0.002 
mg/L. Ivask, Rõlova and Kahru [17] utilized genetically 
modified E. coli MC1061 with combination of different 
regulatory genes such as pbrR/pbrA and cadR/cadA gene for 
mercury (II) detection, but with lower sensitivity compared 
to the biosensor developed using E. coli MC1061. Thus, the 
construction of an effective recombinant biosensor requires 
an appropriate regulatory gene in order to optimize the 
sensitivity towards specific metal. 

 

III.Metal toxicity tolerance of 
recombinant microbial 

biosensor  
Ivask, Rõlova and Kahru [20] reported the tolerance 

level of the recombinant microbes was higher in the 
recombinant bacterial biosensor than the wild type 
counterpart. In their study, the transformation of promoter 
cadA and cadR into Staphylococcus aureus RN4220 strain 
showed that, 2.75 mg/L of cadmium chloride was required 
to induce the toxicity. Whereas, only 0.2 mg/L of cadmium 
chloride was strong enough to induce toxicity for the wild-
type S. aureus RN4220 strain. In another toxicity tolerance 
study done by Stoyanov, Magnani, and Solioz [70], E.coli 
copA-knockout strain DW3110 was used to compare with 
its wild type strain. It was reported that an eight-fold higher 
concentration of argentum and a fifthteen-fold higher 
concentration of copper were required to induce maximum 
toxicity response in the recombinant strain compared to the 
wild type.  

In certain cases, the genetically modified microbial 
biosensors were unable to detect a very low concentration of 
metal pollutants [18-19]. The lowest limit detection of 
copper (II) and cadmium (II) metals using recombinant 
E.coli with copR and copA upstream lacZ gene was only 
able to detect at concentration of 15.961 mg/L [20]. 
Comparatively in another research, the wild-type 
cyanobacteria Anabaena torulosa was able to detect these 
metals to the extent as low as 0.0022 mg/L [21] and 2.7 × 
10

-5
 mg/L [22] respectively. Higher tolerance to the toxicity 

means lower sensitivity, but on the other hand, these specific 
genes could be potentially used in the detection of higher 
concentration of silver and copper toxic in the environment. 

 

IV.Specificity of the genetically 
modified microbial biosensor 

towards metal pollutants 
Genetically modified microbial biosensors were 

found to be highly specific to a certain group of metals. 
Tibazarwa et al. [23] constructed a genetically modified 
Ralstonia eutropha strain AE2515 using cnrYXH 
regulatory gene upstream of luxCDABE reporter gene, 
specifically for nickel and cobalt detections. The 
biosensor did not showed any response to zinc, 
chromium (III and V), manganese, cadmium (II) and 
copper (II) ions in the conformation test. A green 
fluorescent protein (GFP)-based bacterial biosensor 
E.coli DH5a was constructed by Liao et al [24], gave a 
positive response only towards Cd (II), and without 
interference from Pb(II), Sb(III) Zn(II) ions. A yellow 
fluorescence-based E.coli DH5α with arsR gene was 
constructed by Sharma, Asad and Ali [25] for arsenite 
detection and P. fluorescens OS8 which was transformed 
with cueR and copA gene for Cu (II) ion detection [17].  

The specificity of genetically modified microbial 
biosensors may be caused by the production of several 
proteins encoded by different metal-response genes. 
These genes may come from a same family, for example 
metal binding regions of arsR protein (which is specific 
for arsenic) are assumed to be conserved and the 
regulation protein of the cadA-operon and CadC protein 
(which specific for cadmium), are found similar tothe 
member of arsR protein family [26]. Another factor that 
contributes to the specificity is the specific enzyme 
produced by genetically modified microbes in response 
to the presence of specific metal ions, for example E. 
coli strain Bl21 that carries arsR gene and gfp gene is 
capable to produce arsenate reductase, which the 
production of the enzyme is triggered by the presence of 
arsenate [27]. 
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V.Sensitivity of genetically 
modified microbial biosensor 

and wild type microbial 
biosensor  

Several evidence confirmed the sensitivity of genetically 
modified microbial biosensors towards organic pollutants. 
Jia et al. [34] had successfully constructed E.coli TV1061 
strain with grpE promoter fused with luxCDABE gene. The 
outcome of the study provided a detection of atrazine in 
drinking water as low as 1 x 10

-14
 mg/L, where the standard 

set by the United State Environment Protection Agency is 3 
x 10

-3
 mg/L [35]. It was much more sensitive compared to 

wild type Chlorella vulgaris used by Naessens, Leclerc & 
Tran-Minh [36], which able to detect atrazine to the level of 
2.16 ×10

-5
 mg/L. In another research using wild type 

Chlamydomonas reinhardtii [37], the lowest limit of 
detection of atrazine recorded was 2.2 x 10

-3
 mg/L. 

A cyanobacteria recombinant biosensor using 
Synechocystis sp. strain PCC6803 marked with the firefly 
luciferase gene luc, was reported to be more sensitive than 
the wild type green alga Selenastrum capricornutum for the 
detection of glyphosate. Synechocystis sp. strain PCC6803 
gave shorter response time compared to S.  capricornutum 
which has taken 4 days [38].  Even so, several biosensors 
utilizing wild type cells showed a good sensitivity in terms 
of the effective concentration. The reduction of growth by 
50% (EC50) were reported with the wild type green algae 
Dunaliella tertiolecta which was 5.9 μg/L. Synechococcus 
sp. strain PCC 543 and luc-marked Synechocystis sp. strain 
PCC6803 were both reported 5.50 x 10

-1
 μg/L and 2.97 x 

10
4
 μg/L of EC50 respectively, with exposure times of 72 

hours and 96 hours respectively. 

The level of toluene in drinking water set by EPA and 
World Health Organization is not exceeding 0.70 mg/L [39]. 
Two interesting studies were conducted using recombinant 
microbial biosensor of E.coli DH5a harbouring plasmid 
pGLPX1[33] and E. coli strain TG1 harbouring plasmid 
pBS(Kan)TOM [40] showed the biosensors developed were 
able to detect toluene as low as 9.20 x 10

-2
 mg/L and 2.77 x 

10
-2

 mg/L respectively. However, certain recombinant 
microbial biosensors could not give the same successful 
detection rate, for example two biosensors developed using 
Pseudomonas putida mt-2 KG1206 strains [41] and E. coli 
DH5a cells harbouring the pTOLLUX plasmid [48] could 
only detect toluene at 9.21 mg/L and 691.05 mg/L 
respectively. 

 

VI.Reliability and accuracy of the 
recombinant microbial 
biosensor on pollutants 

The reliability and accuracy of genetically modified 
microbial biosensor for organic pollutant detection was 
validated with the conventional chemical analysis, such as 
high liquid performance chromatography. Many biosensors 
yielded highly similar to the outcome from the chemical 
analysis [43-45]. Shin [45] reported that the concentrations 

of phenolic compounds in hospital wastes tested with 
immobilized E. coli cells harbouring lacZ and CapR gene 
were similar to the results obtained from the chemical 
analysis. A few others reported the same trend of analysis 
even though certain chemical impurities and solvent 
extraction were present in the results [46-47].  

The regulatory protein that expressed by pollutant 
responsive gene could often response well to a certain 
targeted organic pollutants what share similar functional 
group, which the pollutants fit into the effector-binding sites. 
For example, the regulatory proteins that reacted with 
toluene, were found to react with benzene, xylene, phenol 
and several other organic compounds as well [40-44, 47-48]. 
Thus, majority of research on genetically modified microbial 
biosensors showed the detection of a group of organic 
compounds rather than a specific. Some limitations were 
reported as well. In a few biosensors, sensitivity over the 
compounds with similar functional group varied 
significantly, and as these recombinant microbes were 
sensitive to the organic compounds with similar functional 
group, the biosensors developed using these microbes might 
not suitable for broad spectrum analysis [47-48]. 

Genetically modified microbial biosensors were tested 
for its ability of detecting metal pollutants in the sample 
taken from the soil and water [15, 24, 25, 31, 33, and 49]. 
The recombinant biosensors were able to differentiate the 
polluted sample from the non-polluted sample with high 
precision in quantitative analysis [15, 31, 33, and 49]. 
Pseudomonas putida X4 carries czcR3 promoter and egfp 
reporter gene for zinc metal detection in water sample from 
red soil, brown soil, and cinnamon soil showed a good 
correlation as well [31].  However, there was discrepancy 
between atomic absorption spectrophotometry analysis for 
P. putida X4 in detecting zinc in black soil and 
Synechocystis sp. PCC 6803 were unable to produce the 
luminescence signal upon incubation with the undiluted 
acetic acid from the contaminated soil 

VII.The reaction rate of 
recombinant and wild type 

biosensor 
The time required for most of the genetically modified 

microbial biosensors to produce a response is different, 
depending on the design of the recombinant cells, the 
biosensors design, and the pollutants. Several wild type 
microbial biosensors have been reported to consume only 
few minutes for a measurable responses [36, 50-51]. The 
exposure time recorded by some wild type microbes is much 
shorter than the recombinant one. This can be explained as 
most of the wild type microbial biosensors detect the target 
pollutants using the photosynthetic pigments or enzymes 
which already present in vivo naturally. Comparatively for 
the genetically modified microbial biosensors, especially for 
the luminescence and fluorescence based biosensors, the 
target pollutants have to be accumulated up to a certain level 
to induce the activation of the depressed reporter gene from 
the repressor protein and to speed up the slow formation of 
reporter proteins [48, 52]. However, a great advantage for 
the recombinant proteins, e.g. green fluorescence protein is 
the stability of the protein, where the detection is reported 
even after the cell death [53] and this characteristic is 
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important for the detection of highly toxic environmental 
pollutants [48]. 

VIII. Conclusion 
The effective applications of genetically modified 
microorganisms in optical biosensor for environmental 
pollutants detection is successfully discussed in the paper. 

Applications of genetically modified microorganism 
biosensor and its comparisons with wild-type 
microorganism biosensor based on different variables also 
intensively been discussed. In sum, it was justified that the 
genetically modified microorganism based biosensor have 
contributed a lot more advantages compared to its wild type 
microorganism biosensor in so many analytical and research 
aspects. 
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