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Abstract—This paper investigates the problem of designing a 

state observer for a Packed Bed Thermal Energy Storage System. 

In previous studies (see e.g. [21]), a mathematical model of the 

system, taking the form of two coupled partial differential 

equations, was derived and validated through comparison with 

experimental measurements. In this paper, the previously derived 

model is approximated by a lumped linear time-invariant model 

and then employed to design a Luenberger state observer capable 

of reconstructing the solid and fluid temperature profiles on the 

basis of few collocated fluid temperature measurements. 

Theoretical design and experimental results are presented 

throughout the paper.  

Keywords.  Thermal Energy Storage System. Sensible heat 

storage, Packed-bed technology;  State observer. 

I.  INTRODUCTION 

Model-based control and advanced process monitoring of 
Distributed-Parameter Systems (DPSs), governed by Partial 
Differential Equations (PDEs), tipically require full-state 
information. However, the available measurements of DPS’are 
typically located on collocated points of the spatial domain, 
that motivates the need of the state observer [17-20,23]. There 
are two main approaches to observer design in DPSs. In the 
first approach, the system PDEs are preliminarily discretized 
(by finite differences or finite volume method) and the observer 
design is subsequently made with reference to the obtained 
finite-dimensional approximate model. In the second approach, 
the observer is designed as an infinite-dimensional DPS, and 
discretization (tipically by finite differences) is made after, at 
the implementation stage. In this paper we take the former 
approach, by transforming the mathematical model of the 
system under consideration into an approximate Linear Time 
Invariant (LTI) finite-dimensional dynamics, and then applying 
observer design techniques for finite-dimensional LTI systems. 
The basic state estimator for linear, lumped-parameter systems 
is the Luenberger observer [22], which will be the observer 
considered in the present work within the framework of a 
physically-motivated observer design problem for a certain 
energy-storage engineering apparatus. 
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Energy storage allows to efficiently exploit the renewable 

energy sources, which are inherently intermittent [1,2]. For 

concentrated solar power (CSP) plants in particular, storage of 

heat permits the uninterrupted production with and without the 

presence of the solar radiation  [3-7]. In [5] the main thermal 

energy storage (TES) technologies were surveyed, and 

particularly the sensible heat storage and latent heat storage 

solutions were compared. Sensible heat storage raises the 

temperature of a solid medium, whereas the latent heat storage 

solution includes a phase change and implies the selection of an 

appropriate phase change material (PCM). Sensible heat 

storage is currently recognized as the simplest and cheapest 

method to store thermal energy [8].  Sensible heat TES systems 

with a single tank filled with solid material (packed bed) of 

high thermal capacity have been proposed, which are about 

35% cheaper than the system with two tanks where the storage 

medium is the same heat transfer fluid (HTF) [9]. In the system 

with a single tank, the hot and cold fluids are separated by a 

moving region, called thermocline, which is characterized by a 

steep gradient of temperature that mainly depends on the 

characteristics of the solid storage material. Systems with 

packed bed (refractory ceramic materials, concrete, and 

limestone are most often utilized due to their relatively low cost 

and high thermal capacity) have been widely studied. Many 

published works (see e.g. [8, 10-14].) refer for numerical 

investigations to the mathematical PDE model originally 

developed by Schumann [12].  

The main objective of the present work is to design and 
experimentally verify the performance of a state observer for a 
single tank packet-bed heat storage system. In a previous work 
[21] a mathematical model for the system in question was 
derived, taking the form of two coupled PDEs. In the present 
work, under sensible approximations, an approximate lumped-
parameter LTI formulation of the model is derived. Such finite 
dimensional model is exploited to design a Luenberger 
observer. The performance of the observer are tested via 
comparison with temperature profiles acquired during 
experimental tests on a laboratory scale prototype operating at 
constant flow. 

Section II recalls the considered mathematical model, with the 
Subsection II.A reporting the derivation of the approximate 
lumped-parameter LTI model. Section III presents the 
proposed Luenberger observer design and discusses the 
experimental investigation of the performance of the designed 
observer. Section IV draws some final conclusions and 
perspectives for next research. 
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 II.  MATHEMATICAL MODEL OF THE THERMAL STORAGE 

SYSTEM 

The Storage System consists of a thermally isolated cylinder 

filled with the packed bed solid material with high thermal 

capacity. During the loading phase, the hot HTF flows through 

the cylinder and conveys the thermal energy to the packed 

bed, whereas the reversed flow of the cold HTF is applied to 

collect the energy from the solid material in the discharging 

phase. The schematics and picture of the laboratory setup are 

shown in the Figures I. 

The considered mathematical model is a LTNE (Local 

Thermal Non-Equilibrium) model based on Schumann’s 

equations for heat transfer in a porous prism [12]. It consists of 

two coupled 1D PDEs which enable the calculation of the 

transient spatio-temporal evolution of the solid (Tb(x,t)) and 

fluid (Tf(x,t)) temperature under the assumptions that: 

• The temperature gradient in the radial direction is zero 

• The cylinder is thermally isolated 

• The heat transfer rate from fluid to solid at any point is  

   proportional to the average difference in temperature  

   between fluid and solid at that point 

 

The two coupled PDEs  (see [12,15,16,21] for the derivation 

and further details) take the form 
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where the meaning of the parameters is explained in the 

following table (the subscript b refers to the solid bed and the 

subscript f refers to the fluid respectively); 

TABLE I.  MEANING OF PARAMETERS 

Parameter Unit Description 

fm  kg/s Massic flow of the HTF 

CV,f  / CV,b J/kgK Specific heat at constant volume 

CP,f  / CP,b J/kgK Specific heat at constant pressure 

  [0,1]    Bed void fraction 

f / b kg/m
3
 Density 

A m
2
 Tank cross section 

h Wm
2
/K Heat transfer coefficient  

dS m Average diameter of the packet 

bed particles 

kf W/mK Thermal conductivity of the fluid 

f Pa s Dynamic viscosity of the fluid 

Defining the next functions 
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model (1)-(2) can be rewritten in the more compact form 

 

 
fb

ff
TTC

x

T
C

t

T










21

,    (8) 

 
bf

b TTC
t

T





3

,                                          (9) 

 

Air is adopted as the HTF. All thermo-physical properties of 

the air are dependent on the temperature Tf (see Fig. II). The 

material chosen for the particles is mostly composed of 

aluminum oxide, and its thermo-physical properties are also 

assumed to be dependent on the temperature Tf (see Fig. 

II).The average diameter of the packet bed particles is 

dS=0.008 m, whereas the bed void fraction is  =0.39.  

The temperatures of the hot and cold mass air flow are 

Thot=237 °C Tcold=38 °C  (10) 

that define the admissible operating range for the temperature 

profiles in the system, whereas a constant airflow is 

considered in the loading and unloading phases, namely 

fm = 0.15 kg/s    (11) 

The coefficients C1, C2, C3 depend  on the air flow   ̇  of the 

HTF, and furthermore they also vary with the temperature due 

to the temperature-depedent thermophysical parameter values.  

The geometrical properties of the tank are: 

L=1.8 m  Height of the tank 

R=0.292 m Diameter of the tank 

A= R
2
=0.26 m

2   
     Tank cross section 

   
FIGURE I.  LABORATORY SETUP SCHEMATICS (LEFT) AND 

PICTURE (RIGHT) 

The nonlinear functions C1, C2, C3 are averaged by 

considering  (11) and the admissible temperature range (10), 

yielding the constant values 

 C1=2,3406   (12) 
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 C2=201,1818   (13) 

 C3=0,023   (14) 

Once the above constant values are replaced into (8)-(9)  the 

original model turns out to be locally linearized and becomes 

time-invariant. In the next subsection a lumped-parameter 

finite-dimensional approximation is devised. 

 
FIGURE II.  THERMOPHYSICAL PROPERTIES OF AIR AND 

ALUMINA WITH VARYING TEMPERATURE  

A. Finite-dimensional LTI model based on finite-difference 

method 

The spatial domain [0,L] is discretized by a uniformly spaced 

grid xi= i dx, where i=0,1,..,M and dx= L/M. M denotes the 

number of chosen discretization points.  

Tfi(t)= Tf(xi,t)      (15) 

Tbi(t)= Tb(xi,t),       (16) 

 

Approximating the spatial derivative by finite difference 

method, the following state equation arise: 
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Tb (t)= [Tb1(t),  Tb2(t) , ….., Tb,M-1(t)  Tb,M(t)]                   (21) 

 
The spatial and temporal steps 

x=0.025 m  Spatial discretization 

t=0.0025 s Temporal discretization 

are chosen in order to satisfy (for each admissible temperature 
and flow values)  the inequality  
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involving the so-called Courant-Friedrichs-Lewy (CFL) 

number. The chosen spatial discretization yields L/x=72 

spatial ―nodes‖ , the value M=72 is thus adopted. The state 

vector is defined as 

   Tbbbfff TTTTTTtT 72217221 ......  (22) 

and the corresponding lumped-parameter model is derived as 

 ̇( )    ( )       ( )  (23) 

with the matrices A and B as follows 
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and the temperature profile     ( ) defining the corresponding 

Dirichlet boundary condition.  

III. OBSERVER DESIGN AND EXPERIMENTAL 

RESULTS 

In the experimental prototype the fluid temperature Tf  is 

measured by temperature sensors embedded into the tank at 19 

different vertical locations uniformly spaced along the height 
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 L of the tank. The available measurements are a subset of the 

states of the vector T(t), defined by an output matrix C. The 

first and last sensors measure the temperature at the top (x=0) 

and bottom (x=L=1.8m) side of the tank. Since the height of 

the tank is L=1.8m, the spacing between the thermocouples is 

thus 0.1m. 

On the basis of model (23), the Luemberger observer is 

correspondingly designed as follows 

 ̂̇( )    ̂( )       ( )    (     ( )    ̂ ( ))
 (25) 

The number m of measurements passed to the observer is 
changed from m = 7 to m = 1 during several distinct observer 
design problems under different information availability. 

The  observer design entails finding an observer gain matrix 
K0 such that the eigenvalues of the matrix A-K0C lie in the 
open left plane. The spectrum of eigenvalues of matrix A is 
entirely contained in the left half plane (see Fig. III) and is 
composed of two separated branches of ―fast‖ eigenvalues (Fig 
III-top) and ―slow‖ eigenvalues (Fig. III-bottom) 

 

 

FIGURE III.  SPECTRUM OF EIGENVALUES OF MATRIX A- 

TOP: HIGH FREQUENCY EIGENVALUES. DOWN: LOW 
FREQUENCY EIGENVALUES  

Being the system observability matrix ill-conditioned, the 
location of the eigenvalues of matrix  A-K0C cannot be set 
arbitrarily.  The matrix K0 is computed by means of the Matlab 

place() function to move to the left the low frequency branch 
of eigenvalues (see the bottom Fig. III) by a fixed amount p. 

Figure IV shows the results of a first test, where the observer 

was designed assuming the availability of 7 distinct equispaced 

measurements. The largest value of p yielding a stable observer 

dynamics was found as p=pmax=0.01, and adopted in the test. 

Figure IV compares the observed and measured temperature 

profiles in sensor locations that were not used for designing the 

observer. The dashed lines denote the observed profiles, 

whereas the continuous lines denotes the measured ones. The 

vertical dashed line denotes the end of the charging phase (the 

system is charged when the temperature of the fluid at the 

lower end of the cylinder is rising by 7.5 degrees from the 

initial value.)  
 

 

FIGURE IV OBSERVED AND MEASURED TEMPERATURE 

PROFILES WITH m=7 AND p==pmax =0.01 

Figure V depicts the corresponding actual and observed 

percentage of charge PoC, computed through the formula 
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FIGURE V OBSERVED AND ACTUAL PoC WITH m=7 AND 
DIFFERENT VALUES OF p 
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 It can be seen from the curves in figure V that the higher p is 

chosen, the faster the convergence of the estimate, but the 
higher as well the transient oscillations.  

In the last test, only a single measurement was passed to the 
observer. The maximal admissible value for p in this test was 
p=pmax=0.0007. Figure VI compares the performance obtained 
using different sensor locations (namely, sensor #2, #10 and 
#18). It emerges that using the sensor located in the upper part 
of the tank (#2) yields higher transient oscillations of the 
estimate. Such a transient oscillations is strongly attenuated 
when the sensors #10 and #18 are used. Besides, comparing 
Figures V and VI it turns out, as expected, that using an higher 
number m of measurement sensors in the observer allows a 
faster reconstruction of the PoC. 

 

FIGURE VI OBSERVED AND MEASURED PoC WITH m=1 
AND DIFFERENT SELECTION OF THE MEASUREMENT POINT 

IV. CONCLUSIONS 

With reference to the packed-bed heat storage apparatus, a 

Luenberger state observer has been designed, and 

experimentally verified, in order to reconstruct the internal 

fluid and packed-bed temperature profiles and the percentage 

of charge of the tank. Further activities will investigate 

different observer designs such as Extended Luenberger 

observer or Kalman filters. Besides, the design of an infinite 

dimensional observer, not relying on any prior discretization of 

the mathematical model, is under investigation. 
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