

5

International Journal of Biomedical Science & Bioinformatics – IJBSB
Volume 1 : Issue 1 [ISSN 2475-2290]

Publication Date : 30 September, 2014

Constructing a Fast Bioinformatics Algorithm to

Solve Cancer Genome Assembly Using Enhanced

Euler Path on Constructed De Bruijn

Bioinformatics Graph
Michael Shan-Hui Ho, Kun-Yu Hung, Paul Pin-Shuo Huang, Jack Dao-Jie Li and Dio Feng-Yu Chung

Abstract—Cancer is defined as a disease that involves changes or

mutations in the cell genome. Cancer genome sequencing has

been recognized as a NP problem. Cancer genome sequencing

includes cancer genome assembly and cancer genome alignment

is through early detection improving survival opportunity of

cancer patients. In this research, a bioinformatics approach uses

a proposed modified Euler path on a constructed De Bruijn

cancer genome graph for solving cancer genome assembly. This

fast DNA algorithm fully utilizes parallelism to conquer time

complexity bottleneck, and improves any cancer genome

Assembly more efficient. The experimental results of cancer

genome reassemble is estimated in O(n3) polynomial bound.

Keywords—Cancer Genome Assembly; Cancer Genome

Alignment; De Bruijn Graphs; Euler Path

I. Introduction

Cancer is an important public health concern around the

world. Cancer is defined as a disease that involves changes or

mutations in the cell genome. These changes (mutations)

produce proteins that disrupt the delicate cellular balance

between cell division and quiescence, resulting in cells that

keep dividing to form cancers. The underlying cause of

mutations leading to cancer is DNA damage.

DNA damage In human cells, the estimated average

number of DNA damages occurring per hour is about 800, and

the number per day is about 19,200[1]. Under normal

circumstances, healthy cells repair virtually all of these

damages. Damages that are not repaired are termed mutations.

When a single cell acquires enough mutations in the DNA

sequence of relevant ‗cancer gene(s)‘ it begins to behave in an

abnormal way characteristic of cancer.

 Michael Shan-Hui Ho
Department of Electrical Engineering, NTPU,

New Taipei City, Taiwan, ROC

Kun-Yu Hung

Department of Information Management, MCU

Taoyuan Country, Taiwan, ROC

Paul Pin-Shuo Huang
Department of Electrical Engineering, NTPU,

New Taipei City, Taiwan, ROC

Jack Dao-Jie Li

 Department of Electrical Engineering, NTPU,

New Taipei City, Taiwan, ROC

Dio Feng-Yu Chung
Department of Electrical Engineering, NTPU,

New Taipei City, Taiwan, ROC

Cancer genome sequencing includes cancer genome

assembly and cancer genome alignment is through early

detection improving survival opportunity of cancer patients.

A. Cancer Genome Assembly

For the last 30 years, fragment assembly followed the

‗‗overlap–layout–consensus‘‘ paradigm[2]. Although this

approach proved to be useful in assembling clones, it faces

difficulties in genomic shotgun assembly: the algorithms often

unable to resolve repeats even in prokaryotic genomes. So, in

the past decade, there has been a new approach: instead of

‗‗overlap–layout–consensus‘‘ paradigm, the new algorithm is

based on the notion of the De Bruijn graph and transforms the

cancer genome assembly problem into an Euler super path

problem [3].

B. The Euler Path Problem

The Euler path problem can be traced back 300 years, to

the Prussian city of Königsberg (Kaliningrad, Russia). In

Königsberg city, seven bridges crossed four parts of the city.

Residents enjoyed strolling through their city, and they

wondered if every part of the city could be visited by walking

across each of the seven bridges exactly once and returning to

one‘s starting location.

A mathematician, Leonhard Euler [4], proposed a

solution in 1735; it made a conceptual breakthrough that

would solve this ―Bridges of Königsberg‖ problem. First,

Euler assumes each landmass represents a point (also called

vertex) and each bridge denotes a line segment (also called

edge) connecting two points/ vertices. This creates a network

graph of vertices connected by edges. By describing a

procedure for determining whether an arbitrary graph contains

a path that visits every edge exactly once. This solution, called

the Euler path, is based on the concept of an undirected graph.

The De Bruijn graph is a kind of digraph, for a digraph, Euler

path not only to traverse all the edges, but also follows the

correct direction. In a more rigorous description, there exists a

path which can traverse the graph without repeating all the

edges and visits them by directed edges along the direction.

C. De Bruijn Graph

 Dutch mathematician Nicolaas De Bruijn finds a cyclic

sequence of letters taken from a given alphabet for which

6

International Journal of Biomedical Science & Bioinformatics – IJBSB
Volume 1 : Issue 1 [ISSN 2475-2290]

Publication Date : 30 September, 2014

every possible word of a certain length (k) appears as a string

of consecutive characters in the cyclic sequence exactly once.

[4][5]

Figure 1: De Bruijn graph.

 There exist n
k
k-mers in an alphabet containing n

symbols. If our alphabet is instead 0 and 1, then all possible

3-mers are simply given by all eight 3-digit binary numbers:

000, 001, 010, 011, 100, 101, 110and 111. The circular

superstring 0001110100 not only contains all 3-mers but also

is as short as possible, as it contains each 3-mer exactly once

shown in Figure 1.

II. Sticker-Based Model

 The sticker-based model employs two basic groups of

single-stranded DNA molecules in its representation of a bit

string. Consider a memory strandNbases in length subdivided

into K non-overlapping regions each M bases long (thus,N ≥

M *K). Each region is identified with exactly one bit position

(or equivalently one Boolean variable) during the course of

the computation. Each memory strand along with its annealed

stickers (if any) represents one bit string shown in Figure 2.

Figure 2:Memory strands of the sticker model

 In Table 1, a two-bit sticker (sm,1and sm,2) model is used

to represent letters A, G, C, T.

Table 1:Two-bit sticker-based model

sm,1 sm,2 Letter of mth site

0 0 A

0 1 G

1 0 C

1 1 T

III. DNA Manipulations

 DNA Manipulations is also called Adleman-Lipton

model. A test tube is a set of molecules of DNA (a multi-set of

finite strings over the alphabet {A,C,G,T}. In this subsection,

DNA Model of computation has eight biological operations,

shown as following:

1. Extract: Given a tube T and a short single strand of

DNA, S. This operation produces two new tubes +(T, S)

and –(T, S). In tube +(T, S), all of the molecules contain

strand S as sub-strand, on the contrary, all molecules in

tube –(T, S) do not contain strand S.

2. Merge: The representation also can be symbol ∪. Given

tubes T1 to Tx, yield ∪ T1, T2, …, Tx), where ∪ T1,

T2, …, Tx) = T1 ∪ T2 ∪ … ∪ Tx. This operation pours

contents of tubes T1 to Tx into one tube without any

change in the individual strands.

3. Detect: Given a tube T, if T includes at least one DNA

molecule then return a response ―YES‖, if T contains no

DNA molecules then get a response ―NO‖.

4. Discard: Given a tube T, this operation will discard tube

T.

5. Amplify: Given a tube T, Amplify (T, T1, T2) operation

will produce two new tubes T1 and T2. Tube T1 and T2 are

totally copy from tube T (T1 and T2 are now identical)

and tube T becomes an empty tube.

6. Append: Given a tube T containing a short strand of

DNA, S. This operation will append S onto the end of

every strand in T.

7. Append-head: Given a tube T containing a short strand of

DNA, S. This operation will append S onto the head of

every strand in T.

8. Read: Given a tube T, this operation describes every

single molecule contained in tube T. Even if T contains

many different molecules each encoding a different set of

bases, the operation can give an explicit description of

exactly one of them.

IV. Basic Bioinformatics Circuitry

 We use logic truth tables to optimize and complete logic

bio-circuit operations that can construct most basic DNA

logic circuits. These DNA logic circuits (gates) work in test

tubes to implement basic logic operations. These gates are

AND, OR, XOR.

A. AND Operation on Bioinformatics

Computing

 The AND operation of a bit with two input Boolean
variables U and V generates a result of 1 or 0. The logic
circuitry of parallel AND on one bit is shown in Figure 3. The
corresponding truth table of the one-bit AND is shown in
Table 2.

Table 2: The truth table of the one-bit AND

Input Output

Uk Vk ANDk = Uk ∧ Vk

0 0 0

0 1 0

7

International Journal of Biomedical Science & Bioinformatics – IJBSB
Volume 1 : Issue 1 [ISSN 2475-2290]

Publication Date : 30 September, 2014

1 0 0

1 1 1

Figure 3: Logic circuitry of parallel AND on one bit

ParallelOneBitAND(T0,Uk,Vk, ANDk)

T1
U=1 = +(T0,Uk

1) and T1
U=0 = (T0,Uk

1).

T2
U=1,V=1 = +(T1

U=1,Vk
1) and T2

U=1,V=0 = (T1
U=1,Vk

1)

T2
U=0,V=1 = +(T1

U=0,Vk
1) and T2

U=0,V=0 = (T1
U=0,Vk

1)

If (Detect(T2
U=1,V=1) = = ―yes‖) then

Append-head(T2
U=1,V=1, ANDk

1)EndIf

If (Detect(T2
U=1,V=0) = = ―yes‖) then

Append-head(T2
U=1,V=0, ANDk

0)EndIf

If (Detect(T2
U=0,V=1) = = ―yes‖) then

Append-head(T2
U=0,V=1, ANDk

0)EndIf

If (Detect(T2
U=0,V=0) = = ―yes‖) then

Append-head(T2
U=0,V=0, ANDk

0)EndIf

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)

EndAlgorithm

Figure 4: Parallel AND operation on one bit algorithm

B. OR Operation on Bioinformatics

Computing

The OR operation of a bit with two input Boolean
variables U and V produces a result of 1 or 0. The logic
circuitry of parallel OR on one bit is shown in Figure 5. The
corresponding truth table of the one-bit OR is shown in Table
3.

Table 3: The truth table of the one-bit OR

Input Output

Uk Vk ORk = Uk Vk

0 0 0

0 1 1

1 0 1

1 1 1

Figure 5: Logic circuitry of parallel OR on one bit

ParallelOneBitOR(T0,Uk,Vk, ORk)

T1
U=1 = +(T0,Uk

1) and T1
U=0 = (T0,Uk

1).

T2
U=1,V=1 = +(T1

U=1,Vk
1) and T2

U=1,V=0 = (T1
U=1,Vk

1)

T2
U=0,V=1 = +(T1

U=0,Vk
1) and T2

U=0,V=0 = (T1
U=0,Vk

1)

If (Detect(T2
U=1,V=1) = = ―yes‖) then

Append-head(T2
U=1,V=1, ORk

1)EndIf

If (Detect(T2
U=1,V=0) = = ―yes‖) then

 Append-head(T2
U=1,V=0, ORk

1)EndIf

If (Detect(T2
U=0,V=1) = = ―yes‖) then

 Append-head(T2
U=0,V=1, ORk

1)EndIf

If (Detect(T2
U=0,V=0) = = ―yes‖) then

 Append-head(T2
U=0,V=0, ORk

0)EndIf

T0= ∪(T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)

EndAlgorithm

Figure 6: Parallel OR operation on one bit algorithm

C. XOR Operation on Bioinformatics

Computing

 The Exclusive-OR (XOR) operation of a bit which can

generate an output of 1 or 0.The logic circuitry of parallel

XOR on one bit is shown in Figure 7. The corresponding truth

table of the one-bit XOR is shown in Table 4:

Table 4: The truth table of the one-bit XOR

Input Output

Uk Vk XORk = UkÅVk

0 0 0

0 1 1

1 0 1

1 1 0

Figure 7: Logic circuitry of Parallel XOR on one bit

ParallelOneBitXOR(T0,Uk,Vk, XORk)

T1
U=1 = +(T0,Uk

1) and T1
U=0 = (T0,Uk

1).

T2
U=1,V=1 = +(T1

U=1,Vk
1) and T2

U=1,V=0 = (T1
U=1,Vk

1)

T2
U=0,V=1 = +(T1

U=0,Vk
1) and T2

U=0,V=0 = (T1
U=0,Vk

1)

If (Detect(T2
U=1,V=1) = = ―yes‖) then

Append-head(T2
U=1,V=1, XORk

0)EndIf

If (Detect(T2
U=1,V=0) = = ―yes‖) then

 Append-head(T2
U=1,V=0, XORk

1)EndIf

If (Detect(T2
U=0,V=1) = = ―yes‖) then

 Append-head(T2
U=0,V=1, XORk

1)EndIf

If (Detect(T2
U=0,V=0) = = ―yes‖) then

 Append-head(T2
U=0,V=0, XORk

0)EndIf

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0).

EndAlgorithm

Figure 8: Parallel XOR operation on one bit algorithm

D. Bio-arithmetic Parallel Comparator
on n Bits

 The following algorithm, ParallelComparator (T0, T0

overlay, Ta, Tb, m, n, g, b), is an n-bit comparator. Algorithm
for parallel execution is shown in Figure 11.

ParallelComparator(T0, T0
overlay , Ta , Tb , m, n, g, b)

For d =0 to Min(n-m,b-g)
For p=n downto m

OneBitComparator(T0
=, Ta, Tb, p, g+d)

If (Detect(T0
=)=―yes‖) then

Append(T0
overlay,Op,g+d

 1)
Discard(T0

=) EndIf
EndFor

EndFor
If (Detect(T0

overlay)=―yes‖) then
T0=∪(T0, T0

overlay) EndIf
Discard(T0

overlay)
EndAlgorithm

Figure 9: Parallel comparator on n bits

V. Fast Bioinformatics Parallel

Algorithms for Solving Cancer

Genome Sequencing Assembly
 In this research, the entire bioinformatics approach

for solving cancer genome sequencing assembly is
accomplished by algorithms I, II, and III. They are algorithms

8

International Journal of Biomedical Science & Bioinformatics – IJBSB
Volume 1 : Issue 1 [ISSN 2475-2290]

Publication Date : 30 September, 2014

ConstructDeBruijnGraphs, ParallelStickerAppended, and
ModifiedEulerPathInDeBruijngraphs.

Algorithm : Solving cancer genome sequencing assembly
(a)Algorithm I : ConstructDeBruijngraphs
(b) Algorithm II :ParallelStickerAppended
(c)Algorithm III: ModifiedEulerPathInDeBruijngraphs

EndAlgorithm

Figure 10: Proposed algorithms to construct a De Bruijn
bioinformatics graph and using the modified Euler path to

solve that De Bruijn bioinformatics graph

Figure 11: Example of cutting process from DNA sequence

into many equal length fragments

We cut the DNA sequence into 3 equal length portions

and use a modified Euler path approach to find an optimal

solution on a constructed De Bruijn bioinformatics graph.

Given a DNA sequence, Figures 12 shows a special cutting

process from a DNA sequence into many overlapped nucleon

fragments in equal length.

The De Bruijn solution space of k-tuple - 1 fragments in

tube T0 is constructed in Figure 13. Each fragment denotes

one vertex in the De Bruijn graph.

ParallelDeBruijnSolutionSpace(T0,k, q)

For m = 1 to q – k+2

(1)T3= +(T0, xm
1) and T4= −(T0, xm

1)

For n = m to m + k – 2

(2a)T5= +(T3, xn
1) and T6= −(T3, xn

1)

(2b)Amplify(T5,T3,T3
backup)

End For

(3)If (m +k -1< =q) Then

For n = q down to m +k -1

(3a)T7= +(T5, xn
1) and T8= −(T5, xn

1)

(3b)Amplify(T8,T5,T5
backup)

End For

Else If

T8 = ∪(T8,T5)

End If

(4)Append-head(T8,Bm)

(5)Tsolution_space = ∪(Tsolution_space,T8)

(6)T0= ∪(T0, T4)

End For

EndAlgorithm

Figure 12: Cutting process from DNA sequence into many

equal length fragments

Figure 13: Example of Figure 12

Figure 14: Example of finding all overlaps for De Bruijn

graph construction

A C G C A T T A G C A T C G G C A T G A

A C G

C G C

A T G

T G A

G C A

C A T

A T T

T T A

T A G

A G C

G C A

C A T

A T C

T C G

C G G

G G C

G C A

C A T

A C G C A T T A G C A T C G G C A T G A

ACG
ACGC

CGC

A C G C A T T A G C A T C G G C A T G A

ACG
ACGC

CGC GCA
GCAT

C AT

CGCA

Target DNA

S1,2
0 s1,1

0s2,2
0 s2,1

1 s3,2
1 s3,1

0

B1 x1
1 x2

1 x3
1 x4

0 x5
0 x6

0 x7
0 x8

0 x9
0 x10

0 x11
0 x12

0 x13
0 x14

0 x15
0 x16

0 x17
0 x18

0 x19
0 x20

0

A C G _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
S2,2

0 s2,1
1s3,2

1 s3,1
0 s4,2

0 s4,1
1

B2 x1
0 x2

1 x3
1 x4

1 x5
0 x6

0 x7
0 x8

0 x9
0 x10

0 x11
0 x12

0 x13
0 x14

0 x15
0 x16

0 x17
0 x18

0 x19
0 x20

0

_ C G C _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

……………………

S18,2
1 s18,1

1s19,2
1 s19,1

0 s20,2
0 s20,1

0

B18 x1
0 x2

0 x3
0 x4

0 x5
0 x6

0 x7
0 x8

0 x9
0 x10

0 x11
0 x12

0 x13
0 x14

0 x15
0 x16

0 x17
0 x18

1 x19
1 x20

1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ T G A

T0

x1
1x2

1x3
1,x1

0x2
1x3

1,x1
0x2

0x3
1,

x1
1x2

1x3
0,x1

0x2
1x3

0,x1
0x2

0x3
0,

x1
1x2

0x3
0,x1

0x2
0x3

1,x1
0x2

1x3
1

Tsolution_space

B4x1
0x2

0x3
0

B3x1
0x2

0x3
1

B2x1
0x2

1x3
0

B1x1
1x2

0x3
0

Tsolution_space

x1
0x2

0x3
0

x1
0x2

0x3
1

x1
0x2

1x3
0

x1
1x2

0x3
0

T0

x1
1x2

1x3
1,x1

0x2
1x3

1,x1
0x2

0x3
1,

x1
1x2

1x3
0,x1

0x2
1x3

0,x1
0x2

0x3
0,

x1
1x2

0x3
0,x1

0x2
0x3

1,x1
0x2

1x3
1

9

International Journal of Biomedical Science & Bioinformatics – IJBSB
Volume 1 : Issue 1 [ISSN 2475-2290]

Publication Date : 30 September, 2014

A C G C

 C G C A

 G C A T

 C A T T

 A T T A

 T T A G

 T A G C

 A G C A

 G C A T

 C A T C

 A T C G

 T C G G

 C G G C

 G G C A

 G C A T

 C A T G

 A T G A

A C G C A T T A G C A T C G G C A T G A

Figure 15: Reassemble all overlaps for De Bruijn graph

construction

Figure 16 appends stickers in the head of each fragment

in the effective solution space.

ParallelStickerAppended(TSticker,Tsolution_space, q)

(1)Forn = qdownto1

(1a)T3= +(TSticker,xn
1)and T4= −(TSticker, xn

1)

If (Xn= A) Then

(1b)Append-head(T3,sn,2
0) and Append-head(T3,sn,1

0)

(1c)TSticker= ∪(T3, T4)

Else If (Xn= G) Then

(1d)Append-head(T3,sn,2
1) and Append-head(T3,sn,1

0)

(1e)TSticker= ∪(T3, T4)

Else If (Xn= C) Then

(1f)Append-head(T3,sn,2
0) and Append-head(T3,sn,1

1)

(1g)TSticker= ∪(T3, T4)

Else If (Xn= T) Then

(1h)Append-head(T3,sn,2
1) and Append-head(T3,sn,1

1)

(1i)TSticker= ∪(T3, T4)End If

EndFor

EndAlgorithm

Figure 16: Two-bit sticker model construction

Figure 17: Example of two-bit sticker model

The algorithm in Figure 18 creates the De Bruijn

bioinformatics graph. This algorithm merges the repeated

vertices into De Bruijn bioinformatics graph. Symbol ―Ini‖ is

used to indicate the ith repeated vertex.

ConstructDeBruijngraphs (TDB_graph,TSticker,q)

(1)T9 = +(TSticker,B1) and T10 =－(TSticker,B1)

(2)Append-head(T9,In1)

(3)For i = 2 to size of T10

(3a)T11 = +(T10,Bi) and T12 =－(T10,Bi)

(4)For j = 1 to size of T9

(4a)T13 = +(T9,Bj) and T14 =－(T9,Bj)

(4b)ParallelComparator(T0
table,T13,T11,i,j,k)

(5)If (Detect(T0
table) = ―yes‖) then

(5a)Append-head(T13,Ini)

(5b)T9 = ∪(T13,T14)

(5c)Discard(T13, T14)

Terminate the execution of the loopEnd If

(6)T9 = ∪(T13,T14)

(7)Discard(T13, T14)End For

(8)If (Detect(T0
table) = ―no‖) then

(8a)Append-head(T11,Ini)

(8b)T9 = ∪(T9,T11)End If

(9)Discard(T10)

(10) T10 = ∪(T10,T12)

(11)Discard(T11, T12)

End For

(12)TDBGraph = ∪(TDBGraph,T9)

EndAlgorithm

Figure 18: De Bruijn graph construction

Figure 19: Example of De Bruijn graph construction

The algorithm in Figure 20 constructs an optimal Euler

path by using the modified Euler path approach.

ModifiedEulerPathInDeBruijngraphs (TDB_graph,TRouting,q, k)

For m = 1 to q-k+1

 T13 = +(TDBGraph,Inm) and T14 =－(TDBGraph,In m)

For n = q-k+1

 T15 = +(T13,Bn) and T16 =－(T13,Bn)

 If (Detect(T15) = ―YES‖) then

Append(TRouting,Bn)

Discard(T15, T16)

Terminate the execution of the loop

CGCA
GCA CATCGCACG

ACGC

ATT

TTA
TTAG

TAG

AGC

GCAT CATG

ATC

TCG

GGC

CGG

ATG TGA
ATGA

TCGG

Tsolution_space

s4,1
1s4,2

0B4x1
0x2

0x3
0

s3,1
0s3,2

0B3x1
0x2

0x3
1

s2,1
1s2,2

1B2x1
0x2

1x3
0

s1,1
0s1,2

0B1x1
1x2

0x3
0

10

International Journal of Biomedical Science & Bioinformatics – IJBSB
Volume 1 : Issue 1 [ISSN 2475-2290]

Publication Date : 30 September, 2014

[2]

GCA

[3]

C AT

CGCACG
[1]

[4]

A T T

[5]

T T A
[6]

TA G

AGC

[7]

[8]
[9]

AT C T C G
[10] [11]

GGC
[13]

CGG

[12]

[14]

[15]

[16]
AT GT G A

[17]

Root

End

End If

Discard(T15, T16)

End For

TDBGraph = ∪(T13,T14)

End For

EndAlgorithm

Figure 20: Parallel modified euler path algorithm

Figure 21: Example of the modified Euler path construction

VI. Complexity Analysis

(1) The time complexity of Algorithm I to construct the De

Bruijn graph is estimated in O(n
3
) polynomial bound.

(2) The time complexity of Algorithm II to append stickers is

estimated in O(3n-1) polynomial bound.

(3) The time complexity of Algorithm III for parallel

modified euler path in De Bruijn is estimated in O(n
3
)

polynomial bound.

(4) The time complexity of total algorithm is in O(n
3
)

polynomial bound.

VII. Conclusion

Taking into account efficiency and accuracy, this paper

uses a fast bioinformatics method to construct a De Burijn

graph along with a modified Euler path in order to solve a

cancer genome assembly problem. The research utilizes

parallelism to make executions with greater efficiency. We

hope that this research demonstrates that bioinformatics

computing is a technology worth pursuing, and should thus

attract more scholars into this domain.

References

[1] Venturi, M; Hambly, RJ; Glinghammar, B; Rafter, JJ; Rowland, IR.

Genotoxic activity in human faecal water and the role of bile acids: a

study using the alkaline comet assay. Carcinogenesis, 1997, 18, 2353-

2359.

[2]Pevzner P. A., Tang Haixu. Fragment Assembly with Double-Barreled

Data. Bioinformatics，2001，17 (1):225—233.

[3]Pevzner P.,1-Tuple DNA Sequencing ：Computer Analysis. Journal of

Bimolecular Structure and Dynamics, 1989, 7(1):63-73.

[4] L. Euler, ―"Solutio problematis ad geometriam situs pertinentis,‖

Comment. Academiae Sci. I. Petropolitanae, 128–140, 1736.

 [5] Algorithms for de novo short read assembly using De Bruijn graphsDaniel

R. Zerbino and Ewan Birney

ACG
[1]

CGC

[2]

GCA

[3]

C AT

CGCACG
[1]

[2]

GCA

[3]

C AT

CGCACG
[1]

[4]

A T T

[5]

T T A

(a)The root is vertex ‗ACG‘. Add vertex ‗CGC‘ to the root

and from path [1] between them.

(b) Add vertex ‗GCA‘ and ‗CAT‘ to travel

paths [2]and[3].

(c) Add vertex ‗ATT‘ and ‗TTA‘ to travel paths [4]and[5].

(d) construction of the modified Euler path.

