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Abstract—Cancer is defined as a disease that involves changes or 

mutations in the cell genome. Cancer genome sequencing has 

been recognized as a NP problem. Cancer genome sequencing 

includes cancer genome assembly and cancer genome alignment 

is through early detection improving survival opportunity of 

cancer patients. In this research, a bioinformatics approach uses 

a proposed modified Euler path on a constructed De Bruijn 

cancer genome graph for solving cancer genome assembly. This 

fast DNA algorithm fully utilizes parallelism to conquer time 

complexity bottleneck, and improves any cancer genome 

Assembly more efficient. The experimental results of cancer 

genome reassemble is estimated in O(n3) polynomial bound.  

Keywords—Cancer Genome Assembly; Cancer Genome 

Alignment; De Bruijn Graphs; Euler Path 

I. Introduction 

Cancer is an important public health concern around the 

world. Cancer is defined as a disease that involves changes or 

mutations in the cell genome. These changes (mutations) 

produce proteins that disrupt the delicate cellular balance 

between cell division and quiescence, resulting in cells that 

keep dividing to form cancers. The underlying cause of 

mutations leading to cancer is DNA damage. 

DNA damage In human cells, the estimated average 

number of DNA damages occurring per hour is about 800, and 

the number per day is about 19,200[1]. Under normal 

circumstances, healthy cells repair virtually all of these 

damages. Damages that are not repaired are termed mutations. 

When a single cell acquires enough mutations in the DNA 

sequence of relevant ‗cancer gene(s)‘ it begins to behave in an 

abnormal way characteristic of cancer.   
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Cancer genome sequencing includes cancer genome 

assembly and cancer genome alignment is through early 

detection improving survival opportunity of cancer patients. 

A. Cancer Genome Assembly 

For the last 30 years, fragment assembly followed the 

‗‗overlap–layout–consensus‘‘ paradigm[2]. Although this 

approach proved to be useful in assembling clones, it faces 

difficulties in genomic shotgun assembly: the algorithms often 

unable to resolve repeats even in prokaryotic genomes. So, in 

the past decade, there has been a new approach: instead of 

‗‗overlap–layout–consensus‘‘ paradigm, the new algorithm is 

based on the notion of the De Bruijn graph and transforms the 

cancer genome assembly problem into an Euler super path 

problem [3]. 

B. The Euler Path Problem 

The Euler path problem can be traced back 300 years, to 

the Prussian city of Königsberg (Kaliningrad, Russia). In 

Königsberg city, seven bridges crossed four parts of the city. 

Residents enjoyed strolling through their city, and they 

wondered if every part of the city could be visited by walking 

across each of the seven bridges exactly once and returning to 

one‘s starting location. 

A mathematician, Leonhard Euler  [4], proposed a 

solution in 1735; it made a conceptual breakthrough that 

would solve this ―Bridges of Königsberg‖ problem. First, 

Euler assumes each landmass represents a point (also called 

vertex) and each bridge denotes a line segment (also called 

edge) connecting two points/ vertices. This creates a network 

graph of vertices connected by edges. By describing a 

procedure for determining whether an arbitrary graph contains 

a path that visits every edge exactly once. This solution, called 

the Euler path, is based on the concept of an undirected graph. 

The De Bruijn graph is a kind of digraph, for a digraph, Euler 

path not only to traverse all the edges, but also follows the 

correct direction. In a more rigorous description, there exists a 

path which can traverse the graph without repeating all the 

edges and visits them by directed edges along the direction.  

C. De Bruijn Graph 

 Dutch mathematician Nicolaas De Bruijn finds a cyclic 

sequence of letters taken from a given alphabet for which 
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every possible word of a certain length (k) appears as a string 

of consecutive characters in the cyclic sequence exactly once. 

[4][5] 

 
Figure 1: De Bruijn graph. 

 There exist n
k
k-mers in an alphabet containing n 

symbols. If our alphabet is instead 0 and 1, then all possible 

3-mers are simply given by all eight 3-digit binary numbers: 

000, 001, 010, 011, 100, 101, 110and 111. The circular 

superstring 0001110100 not only contains all 3-mers but also 

is as short as possible, as it contains each 3-mer exactly once 

shown in Figure 1. 

II. Sticker-Based Model 

 The sticker-based model employs two basic groups of 

single-stranded DNA molecules in its representation of a bit 

string. Consider a memory strandNbases in length subdivided 

into K non-overlapping regions each M bases long (thus,N ≥ 

M *K). Each region is identified with exactly one bit position 

(or equivalently one Boolean variable) during the course of 

the computation. Each memory strand along with its annealed 

stickers (if any) represents one bit string shown in Figure 2. 

 
Figure 2:Memory strands of the sticker model 

 In Table 1, a two-bit sticker (sm,1and sm,2) model is used 

to represent letters A, G, C, T. 

Table 1:Two-bit sticker-based model 

sm,1 sm,2 Letter of mth site 

0 0 A 

0 1 G 

1 0 C 

1 1 T 

III. DNA Manipulations 

 DNA Manipulations is also called Adleman-Lipton 

model. A test tube is a set of molecules of DNA (a multi-set of 

finite strings over the alphabet {A,C,G,T}. In this subsection, 

DNA Model of computation has eight biological operations, 

shown as following: 

1. Extract:  Given a tube T and a short single strand of 

DNA, S. This operation produces two new tubes +(T, S) 

and –(T, S). In tube +(T, S), all of the molecules contain 

strand S as sub-strand, on the contrary, all molecules in 

tube –(T, S) do not contain strand S. 

2. Merge: The representation also can be symbol ∪. Given 

tubes T1 to Tx, yield ∪ T1, T2, …, Tx), where ∪ T1, 

T2, …, Tx) = T1 ∪  T2 ∪ … ∪  Tx.  This operation pours 

contents of tubes T1 to Tx into one tube without any 

change in the individual strands. 

3. Detect: Given a tube T, if T includes at least one DNA 

molecule then return a response ―YES‖, if T contains no 

DNA molecules then get a response ―NO‖. 

4. Discard: Given a tube T, this operation will discard tube 

T. 

5. Amplify: Given a tube T, Amplify (T, T1, T2) operation 

will produce two new tubes T1 and T2. Tube T1 and T2 are 

totally copy from tube T (T1 and T2 are now identical) 

and tube T becomes an empty tube. 

6. Append: Given a tube T containing a short strand of 

DNA, S. This operation will append S onto the end of 

every strand in T. 

7. Append-head: Given a tube T containing a short strand of 

DNA, S. This operation will append S onto the head of 

every strand in T. 

8. Read: Given a tube T, this operation describes every 

single molecule contained in tube T.  Even if T contains 

many different molecules each encoding a different set of 

bases, the operation can give an explicit description of 

exactly one of them. 

IV. Basic Bioinformatics Circuitry 

 We use logic truth tables to optimize and complete logic 

bio-circuit operations that can construct most basic DNA 

logic circuits.  These DNA logic circuits (gates) work in test 

tubes to implement basic logic operations.  These gates are 

AND, OR, XOR. 

A. AND Operation on Bioinformatics 

Computing 

 The AND operation of a bit with two input Boolean 
variables U and V generates a result of 1 or 0. The logic 
circuitry of parallel AND on one bit is shown in Figure 3. The 
corresponding truth table of the one-bit AND is shown in 
Table 2. 

Table 2: The truth table of the one-bit AND 

Input Output 

Uk Vk ANDk = Uk ∧ Vk 

0 0 0 

0 1 0 
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1 0 0 

1 1 1 

 
Figure 3: Logic circuitry of parallel AND on one bit 

ParallelOneBitAND(T0,Uk,Vk, ANDk )  

T1
U=1 = +(T0,Uk

1) and T1
U=0 = (T0,Uk

1).  

T2
U=1,V=1 = +(T1

U=1,Vk
1) and T2

U=1,V=0 = (T1
U=1,Vk

1) 

T2
U=0,V=1 = +(T1

U=0,Vk
1) and T2

U=0,V=0 = (T1
U=0,Vk

1) 

If (Detect(T2
U=1,V=1) = = ―yes‖) then 

Append-head(T2
U=1,V=1, ANDk

1)EndIf 

If (Detect(T2
U=1,V=0) = = ―yes‖) then    

Append-head(T2
U=1,V=0, ANDk

0)EndIf 

If (Detect(T2
U=0,V=1) = = ―yes‖) then    

Append-head(T2
U=0,V=1, ANDk

0)EndIf 

If (Detect(T2
U=0,V=0) = = ―yes‖) then   

Append-head(T2
U=0,V=0, ANDk

0)EndIf 

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)  

EndAlgorithm 

Figure 4: Parallel AND operation on one bit algorithm 

B. OR Operation on Bioinformatics 

Computing 

The OR operation of a bit with two input Boolean 
variables U and V produces a result of 1 or 0. The logic 
circuitry of parallel OR on one bit is shown in Figure 5. The 
corresponding truth table of the one-bit OR is shown in Table 
3. 

Table 3: The truth table of the one-bit OR 

Input Output 

Uk Vk ORk = Uk  Vk 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 
Figure 5: Logic circuitry of parallel OR on one bit 

ParallelOneBitOR(T0,Uk,Vk, ORk)  

T1
U=1 = +(T0,Uk

1) and T1
U=0 = (T0,Uk

1).  

T2
U=1,V=1 = +(T1

U=1,Vk
1) and T2

U=1,V=0 = (T1
U=1,Vk

1) 

T2
U=0,V=1 = +(T1

U=0,Vk
1) and T2

U=0,V=0 = (T1
U=0,Vk

1) 

If (Detect(T2
U=1,V=1) = = ―yes‖) then 

Append-head(T2
U=1,V=1, ORk

1)EndIf 

If (Detect(T2
U=1,V=0) = = ―yes‖) then    

 Append-head(T2
U=1,V=0, ORk

1)EndIf 

If (Detect(T2
U=0,V=1) = = ―yes‖) then    

 Append-head(T2
U=0,V=1, ORk

1)EndIf 

If (Detect(T2
U=0,V=0) = = ―yes‖) then   

 Append-head(T2
U=0,V=0, ORk

0)EndIf 

T0= ∪(T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)  

EndAlgorithm 

Figure 6: Parallel OR operation on one bit algorithm 

C. XOR Operation on Bioinformatics 

Computing 

 The Exclusive-OR (XOR) operation of a bit which can 

generate an output of 1 or 0.The logic circuitry of parallel 

XOR on one bit is shown in Figure 7. The corresponding truth 

table of the one-bit XOR is shown in Table 4: 

Table 4: The truth table of the one-bit XOR 

Input Output 

Uk Vk XORk = UkÅVk 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 
Figure 7: Logic circuitry of Parallel XOR on one bit 

ParallelOneBitXOR(T0,Uk,Vk, XORk)  

T1
U=1 = +(T0,Uk

1) and T1
U=0 = (T0,Uk

1).  

T2
U=1,V=1 = +(T1

U=1,Vk
1) and T2

U=1,V=0 = (T1
U=1,Vk

1)  

T2
U=0,V=1 = +(T1

U=0,Vk
1) and T2

U=0,V=0 = (T1
U=0,Vk

1)  

If (Detect(T2
U=1,V=1) = = ―yes‖) then 

Append-head(T2
U=1,V=1, XORk

0)EndIf 

If (Detect(T2
U=1,V=0) = = ―yes‖) then    

 Append-head(T2
U=1,V=0, XORk

1)EndIf 

If (Detect(T2
U=0,V=1) = = ―yes‖) then    

 Append-head(T2
U=0,V=1, XORk

1)EndIf 

If (Detect(T2
U=0,V=0) = = ―yes‖) then   

 Append-head(T2
U=0,V=0, XORk

0)EndIf 

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0).  

EndAlgorithm 

Figure 8: Parallel XOR operation on one bit algorithm 

D. Bio-arithmetic Parallel Comparator 
on n Bits 

 The following algorithm, ParallelComparator (T0, T0 

overlay, Ta, Tb, m, n, g, b), is an n-bit comparator. Algorithm 
for parallel execution is shown in Figure 11. 

ParallelComparator(T0, T0
overlay , Ta , Tb , m, n, g, b) 

For d =0 to Min(n-m,b-g) 
For p=n downto m 

OneBitComparator(T0
=, Ta, Tb, p, g+d) 

If (Detect(T0
=)=―yes‖) then 

Append(T0
overlay,Op,g+d

 1) 
Discard(T0

=)  EndIf 
EndFor    

EndFor 
If (Detect(T0

overlay)=―yes‖) then 
T0=∪(T0, T0

overlay)  EndIf 
Discard(T0

overlay) 
EndAlgorithm 

Figure 9: Parallel comparator on n bits 

V. Fast Bioinformatics Parallel 

Algorithms for Solving Cancer 

Genome Sequencing  Assembly 
 In this research, the entire bioinformatics approach 

for solving cancer genome  sequencing assembly is 
accomplished by algorithms I, II, and III. They are  algorithms 
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ConstructDeBruijnGraphs, ParallelStickerAppended, and 
ModifiedEulerPathInDeBruijngraphs. 

Algorithm : Solving cancer genome  sequencing assembly 
(a)Algorithm I : ConstructDeBruijngraphs  
(b) Algorithm II :ParallelStickerAppended 
(c)Algorithm III: ModifiedEulerPathInDeBruijngraphs  

EndAlgorithm 

Figure 10: Proposed algorithms to construct a De Bruijn 
bioinformatics graph and using the modified Euler path to 

solve that De Bruijn bioinformatics graph 
 

 

 

 

 

 

 

Figure 11: Example of cutting process from DNA sequence 

into many equal length fragments 

We cut the DNA sequence into 3 equal length portions 

and use a modified Euler path approach to find an optimal 

solution on a constructed De Bruijn bioinformatics graph. 

Given a DNA sequence, Figures 12 shows a special cutting 

process from a DNA sequence into many overlapped nucleon 

fragments in equal length. 

 

The De Bruijn solution space of k-tuple - 1 fragments in 

tube T0 is constructed in Figure 13. Each fragment denotes 

one vertex in the De Bruijn graph. 

 

ParallelDeBruijnSolutionSpace(T0,k, q) 

For m = 1 to q – k+2 

(1)T3= +(T0, xm
1) and T4= −(T0, xm

1) 

For n = m to m + k – 2  

(2a)T5= +(T3, xn
1) and T6= −(T3, xn

1) 

(2b)Amplify(T5,T3,T3
backup) 

End For 

(3)If (m +k -1< =q) Then 

For n = q down to m +k -1 

(3a)T7= +(T5, xn
1) and T8= −(T5, xn

1) 

(3b)Amplify(T8,T5,T5
backup) 

End For 

Else If 

T8 = ∪(T8,T5) 

End If 

(4)Append-head(T8,Bm) 

(5)Tsolution_space = ∪(Tsolution_space,T8) 

(6)T0= ∪(T0, T4) 

End For 

EndAlgorithm 

Figure 12: Cutting process from DNA sequence into many 

equal length fragments 

 

  

Figure 13: Example of Figure 12 

 

 

Figure 14: Example of finding all overlaps for De Bruijn 

graph construction 
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C A T
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T C G

C G G

G G C

G C A

C A T

A C G C A T T A G C A T C G G C A T G A

ACG
ACGC

CGC

A C G C A T T A G C A T C G G C A T G A

ACG
ACGC

CGC GCA
GCAT

C AT

CGCA

Target DNA 

S1,2
0 s1,1

0s2,2
0 s2,1

1 s3,2
1 s3,1

0  

B1 x1
1 x2

1 x3
1 x4

0 x5
0 x6
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1s19,2
1 s19,1

0 s20,2
0 s20,1

0  
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0 x2

0 x3
0 x4

0 x5
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0 x8

0 x9
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0 x15
0 x16
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1 
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T0 

x1
1x2

1x3
1,x1

0x2
1x3

1,x1
0x2

0x3
1, 

x1
1x2

1x3
0,x1

0x2
1x3

0,x1
0x2

0x3
0, 

x1
1x2

0x3
0,x1

0x2
0x3

1,x1
0x2

1x3
1 

Tsolution_space 

B4x1
0x2

0x3
0

 

B3x1
0x2

0x3
1 

B2x1
0x2

1x3
0 

B1x1
1x2

0x3
0
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0x2

0x3
0
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1 
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T0 
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1, 

x1
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0,x1
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1x3
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0x3
0,x1

0x2
0x3

1,x1
0x2

1x3
1 



 

9 

 

International Journal of Biomedical Science & Bioinformatics – IJBSB   
Volume 1 : Issue 1      [ISSN 2475-2290] 

Publication Date : 30 September,  2014 
 

A C G C 
 

               

 C G C A 
  

             

  G C A T  
  

           

   C A T T 
   

          

    A T T A             

     T T A G            

      T A G C           

       A G C A          

        G C A T         

         C A T C        

          A T C G       

           T C G G      

            C G G C     

             G G C A    

              G C A T   

               C A T G  

                A T G A 

A C G C A T T A G C A T C G G C A T G A 

Figure 15: Reassemble all overlaps for De Bruijn graph 

construction 

Figure 16 appends stickers in the head of each fragment 

in the effective solution space.  

ParallelStickerAppended(TSticker,Tsolution_space, q) 

(1)Forn = qdownto1 

(1a)T3= +(TSticker,xn
1)and T4= −(TSticker, xn

1) 

If (Xn= A) Then 

(1b)Append-head(T3,sn,2
0) and Append-head(T3,sn,1

0) 

(1c)TSticker= ∪(T3, T4) 

Else If (Xn= G) Then 

(1d)Append-head(T3,sn,2
1) and Append-head(T3,sn,1

0) 

(1e)TSticker= ∪(T3, T4) 

Else If (Xn= C) Then 

(1f)Append-head(T3,sn,2
0) and Append-head(T3,sn,1

1) 

(1g)TSticker= ∪(T3, T4) 

Else If (Xn= T) Then 

(1h)Append-head(T3,sn,2
1) and Append-head(T3,sn,1

1) 

(1i)TSticker= ∪(T3, T4)End If 

EndFor 

EndAlgorithm 

Figure 16: Two-bit sticker model construction 

 

 

 

 

Figure 17: Example of two-bit sticker model 

The algorithm in Figure 18 creates the De Bruijn 

bioinformatics graph. This algorithm merges the repeated 

vertices into De Bruijn bioinformatics graph. Symbol ―Ini‖ is 

used to indicate the ith repeated vertex. 

 

  

ConstructDeBruijngraphs (TDB_graph,TSticker,q) 

(1)T9 = +( TSticker,B1) and T10 =－(TSticker,B1) 

(2)Append-head(T9,In1) 

(3)For i = 2 to size of T10 

(3a)T11 = +(T10,Bi) and T12 =－(T10,Bi) 

(4)For j = 1 to size of T9 

(4a)T13 = +(T9,Bj) and T14 =－(T9,Bj) 

(4b)ParallelComparator(T0
table,T13,T11,i,j,k) 

(5)If (Detect(T0
table ) = ―yes‖) then 

(5a)Append-head(T13,Ini) 

(5b)T9 = ∪(T13,T14) 

(5c)Discard(T13, T14) 

Terminate the execution of the loopEnd If 

(6)T9 = ∪(T13,T14) 

(7)Discard(T13, T14)End For 

(8)If (Detect(T0
table ) = ―no‖) then 

(8a)Append-head(T11,Ini) 

(8b)T9 = ∪(T9,T11)End If 

(9)Discard(T10) 

(10) T10 = ∪(T10,T12) 

(11)Discard(T11, T12) 

End For 

(12)TDBGraph = ∪(TDBGraph,T9) 

EndAlgorithm 

Figure 18: De Bruijn graph construction 

 

 
Figure 19: Example of De Bruijn graph construction 

The algorithm in Figure 20 constructs an optimal Euler 

path by using the modified Euler path approach. 

ModifiedEulerPathInDeBruijngraphs (TDB_graph,TRouting,q, k) 

For m = 1 to q-k+1 

 T13 = +( TDBGraph,Inm) and T14 =－(TDBGraph,In m) 

For n = q-k+1 

  T15 = +( T13,Bn) and T16 =－(T13,Bn) 

  If (Detect(T15) = ―YES‖) then 

Append(TRouting,Bn) 

Discard(T15, T16) 

Terminate the execution of the loop   

CGCA
GCA CATCGCACG

ACGC

ATT

TTA
TTAG

TAG

AGC

GCAT CATG

ATC

TCG

GGC

CGG

ATG TGA
ATGA

TCGG

Tsolution_space 

s4,1
1s4,2

0B4x1
0x2

0x3
0 

s3,1
0s3,2

0B3x1
0x2

0x3
1 

s2,1
1s2,2

1B2x1
0x2

1x3
0 

s1,1
0s1,2

0B1x1
1x2

0x3
0
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[2]

GCA

[3]

C AT

CGCACG
[1]

[4]

A T T

[5]

T T A
[6]

TA G

AGC

[7]

[8]
[9]

AT C T C G
[10] [11]

GGC
[13]

CGG

[12]

[14]

[15]

[16]
AT GT G A

[17]

Root

End

End If 

Discard(T15, T16) 

End For 

TDBGraph = ∪(T13,T14) 

End For 

EndAlgorithm 

Figure 20: Parallel modified euler path algorithm 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 
 

 

 

Figure 21: Example of the modified Euler path construction 

VI. Complexity Analysis 

(1) The time complexity of Algorithm I to construct the De 

Bruijn graph is estimated in O(n
3
) polynomial bound. 

(2) The time complexity of Algorithm II to append stickers is 

estimated in O(3n-1) polynomial bound. 

(3) The time complexity of Algorithm III for parallel 

modified euler path in De Bruijn is estimated in O(n
3
) 

polynomial bound. 

(4) The time complexity of  total algorithm is in O(n
3
) 

polynomial bound. 

VII. Conclusion 

Taking into account efficiency and accuracy, this paper 

uses a fast bioinformatics method to construct a De Burijn 

graph along with a modified Euler path in order to solve a 

cancer genome assembly problem. The research utilizes 

parallelism to make executions with greater efficiency. We 

hope that this research demonstrates that bioinformatics 

computing is a technology worth pursuing, and should thus 

attract more scholars into this domain. 
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(a)The root is vertex ‗ACG‘. Add vertex ‗CGC‘ to the root 

and from path [1] between them.  

(b) Add vertex ‗GCA‘ and ‗CAT‘ to travel 

paths [2]and[3].  

(c) Add vertex ‗ATT‘ and ‗TTA‘ to travel paths [4]and[5]. 

(d) construction of the modified Euler path. 


