

4

International Journal of Advances in Software Engineering & Research Methodology
 Volume 3 : Issue 2 [ISSN 2374-1619]

 Publication Date : 30 December, 2016

A traceability tool for model-based development

dealing with uncertainties
Go Hirakawa, Kenji Hisazumi, Ryoichi Nagatsuji, Tsuneo Nakanishi, Akira Fukuda

Abstract—An architecture that considers a system life cycle

from the designing stage to the operational stage is needed for

solving problems in large-scale, complicated system

developments. It is necessary to establish traceability among

design assets, development assets, and operational assets

through a life cycle of the system in order to introduce this

process into an actual development situation. In this paper, we

introduce the MetaIndexTools, a traceability tool for model-

based development that can deal with uncertainties and

consider the life cycle of the system.

Keywords—Life cycle–oriented, uncertainty, model-based

development

I. Introduction
Recently, the development scale of systems has kept

increasing and becoming more complicated. The target
domain treated by a system is also expanding. Such systems
often require a change of specifications by a change in social
needs and environmental conditions. Our research group is
working on introducing a concept such as uncertainty into
system development to address such situations. We believe
that applying an architecture that considers a system life
cycle from the designing stage to the operational stage can
settle this problem. Here, by uncertainty, we mean a
specification that cannot be defined uniquely until a system
has entered the operational stage. We proved that a
description of uncertainty is possible to use for the model
description using GSN, which stands for Goal Strategy
Notification. We also proposed a method which fixes
uncertainties using operational information [1]. However, it
is necessary to establish traceability among design assets,
development assets, and operational assets through a life
cycle of the system to introduce this process into an actual
development situation. Conventional model-based
development tools do not support traceability among assets,
including operational assets. A tool for model-based
development that is easy to understand and customize is
required. In this paper, we propose MetaIndexTools, which
is the traceability tool for the model-based development that
can deal with uncertainties and consider the lifecycle of the
system. MetaIndexTools is light-weight, customizable for
various development methodologies, and available for
many platforms. In our research, we will investigate the
effectivity of the lifecycle-based development using
MetaIndexTools in actual development sites. We introduce
related works in Section II, declare a data model for the
MetaIndex in Section III, implement MetaIndexTools with
the MetaIndex model in Section IV, examine a case study
using a sample application using MetaIndexTools in Section
V, and conclude in Section VI.

II. Related Works
As a system becomes complicated, traceability in system

development is of vital interest. A large number of studies

on requirement traceability and traceability in MDD, in

particular, have been performed [2]. In other research,

traceability links are expressed in metamodels, but there is

no standard notification. To correspond to such situation,

“traceability metamodeling language” (TML) is proposed by

Drivalos et al. [3], but there is no tool to handle it visually.

On the other hand, the MDD tool which has traceability

feature has been developed, and it is possible to mention

pure::variants and Astah as representative examples.

The pure variants [4] have the management feature, which

can manage traceability among feature models and

development assets, and the automatic code generation

feature, which fully supports a variant model. Pure variants

are built on the premise of a development process uses a

feature model and a variant model. Astah [5] is a UML-

based development tool for general purpose; it supports

traceability among nodes based on the sysML model.

However, these tools need specific development processes.

It is hard to secure traceability through the life cycle of a

system using conventional tools in actual development

environments because every development site adopts

different processes that depend on development objects and

development scales.

III. A Data Model for the
MetaIndex

A. Requirements
We need to define a meta-model that can be described

following the index before tool development. The index can
handle the software development properly. It is possible not
to depend on the development property classification and the
attribute treated by each tool for index and to treat them
equally. The index can be described by the binary relations
between the index and group relations, and it can map the
paradigm of various development methods, which makes it
possible to indicate use cases to actual developers. The
MetaIndex model can adapt to various development
processes by describing each above-mentioned concept as a
meta-model.

B. The Data Model
To enable the security of traceability for which we do

not depend on a specific development process, we propose a
data model for our system. Figure 1 shows a class diagram
of our proposed model. The model consists of two parts:
methodology and index. In the diagram, the blue classes
indicate methodology-related classes, and cream-colored
classes illustrate index-related classes.

5

International Journal of Advances in Software Engineering & Research Methodology
 Volume 3 : Issue 2 [ISSN 2374-1619]

 Publication Date : 30 December, 2016

Figure 1 class diagram of MetaIndex model

To define the methodology, we should make instances of
methodology classes. It is enough to make a set of instances
of the classes for each methodology. For example, when we
want to introduce a feature diagram for the software product
line methodology [6], we should generate instances of them
to define the feature diagram. If we need to define another
methodology, such as use-case driven development [7], we
should make another set of instances of them. The
methodology consists of definitions of indexes, relations,
and indexed containers. The index is a data structure that
can help us trace parts of software artifacts. The index has
certain attributes. The relation is an association between
indexes. The indexed container is a part or the entirety of
software artifacts associated with one or more indexes, and
it is traceable from an index to one or more indexed
containers. The indexed container has some handlers that are
invocated by tools such as highlighting. The class
diagram presents the definition of attributes of indexes
(IndexAttributeDefinition), relation (RelationDefinition)
and its attributes (RelationAttributeDefinition), attributes of
index containers (IndexContainerAttributeDefinition), and
handlers (IndexedContainerHandling). To make a real index
model, such as a feature model, we instantiate cream-
colored index classes. Instances of the index classes are
generated for each diagram. The class diagram shows
indexes (Index), attributes of indexes (IndexAttribute),
relations (Relation), attributes of relation
(RelationAttribute), groups of indexes (IndexGroup),
indexed containers (IndexedContainer), and attributes of
indexed containers (IndexedContainerAttribute). All
attributes and handlers are defined by the methodology
definition.

IV. Development of
MetaIndexTools

The model-base development tool and MetaIndexTools,

which treat a MetaIndex model, are needed to manage

development property based on such model.

MetaIndexTools requires the use of the model editor feature,

which treats indexes as meta models. The traceability editor

function achieves traceability among indexes and other

assets.

In this research, we investigate whether the MetaIndex

method is effective in actual development scenes that adapt

various development methods. Therefore, MetaIndexTools

has a number of non-function requirements; it needs to be:

1. Applicable to various development methods;

2. Adaptable to the development of the various scales,

from the small to the large scale;

3. Able to collect metrics at the different stages of

development;

4. Simple to understand and of a small learning cost;

5. Lightweight and easy to use;

6. Possible to use in multiple platforms.

There is no model-based development tool that meets

requirement 1, and it is hard to acquire arbitrary metrics.

Therefore, we plan to develop a prototype of

MetaIndexTools and apply it to various development

projects at and outside our university. By getting feedback

from actual development, we improve MetaIndexTools to

meet requirements 2, 4, and 5. We have developed

MetaIndexTools, which has index operation, traceability

making, and traceability confirmation functions.

MetaIndexTools is applicable to various development

methods, and it is necessary to customize it for these

development methods. We achieved customization by

correspondence with a data model based on the MetaIndex

model defined in Section II. MetaIndexTools should be

multi-platform because the present development

environment, represented by OS, programming language,

and development tools, is varied. We achieved multi-

platform by developing it as an electron application using

web-based technology, html5, and node.js. We also

achieved cooperation with third-party development tools by

defining REST API that handles indexes based on the

MetaIndex data model. The outline of MetaIndexTools is

shown in figure 2.

Figure 2 Block diagram of MetaIndexTools

MetaIndexTools consists of MetaIndexEditor, which

performs the operation and visualization of the index and

relative operations among the indexes; MetaIndexPlugin,

which performs operations of IndexedContainer and relative

operations with the index and IndexedContainer on the

third-party tools; MetaIndexDataBase, which stocks the

index based on the MetaIndexModel; and MetaIndexAPI,

which controls the index operations from MetaIndexEditor

and MetaIndexPlugin.

A. MetaIndexDatabase
We proposed the MetaIndexModel in Section III, which

could deal with development assets in different development

6

International Journal of Advances in Software Engineering & Research Methodology
 Volume 3 : Issue 2 [ISSN 2374-1619]

 Publication Date : 30 December, 2016

methods. Because the development assets we treat are

various, we need MetaIndexDB, which can manage these

assets universally, so we designed and implemented a DB

scheme belonging to the DataModel defined in Section III.

MetaIndexDataBase is a database that stocks the elements of

the MetaIndexModel. We have designed this DataBase to be

independent from any other data and modeling tools,

including MetaIndexEditor.

B. MetaIndexAPI
The MetaIndexModel has the ability to add traceability

between the index and the assets. However, MetaIndexTools

does not have the ability to manage entire assets, which

depend on the development technique. Therefore, we have

achieved an operating MetaIndexModel by using various

tools, including MetaIndexEditor, and by determining

MetaIndexAPI. MetaIndexAPI is the external API, which

operates the index on MetaIndexDataBase corresponding to

the MetaIndexEditor and MetaIndexPlugin.

API operates Index and Relation add Index delete Index

modify Index add Relation delete Relation modify Relation.

To visualize traceability with a different tool, API also has

Index selection features. Index selection is selected.

We implemented MetaIndexAPI as RESTAPI and enabled

these MetaIndexModel operations from various external

tools by HTTP communication. We used Ruby and Sinatra

for implementation.

C. MetaIndexEditor
MetaIndex can treat suitable data models for various

development methods, but the tool that can treat such a

meta-model does not exist. Therefore, we developed

MetaModelEditor at first, which was a general-purpose

model editor. Then, we built the data model based on

FeatureModel and expanded that to treat traceability.

Finally, we applied it to MetaModelEditor and produced

MetaIndexEditor experimentally. MetaModelEditor is a

general-purpose model editor and can treat a model

according to various meta-models described in eCore [8].

MetaModelEditor consists of an editing meta-model feature

based on eCore description and editing, a model feature

according to the meta-model. MetaIndexTools should be

multi-platform because the present development

environment, represented by OS, programming language,

and development tools, is varied. We achieved multi-

platform by developing it as an electron application using

web-based technology, html5, and node.js. MetaIndexEditor

is the modeling tool, which performs the operation and

visualization of Index and relative operation among the

Indexes. We developed MetaIndexEditor by improving the

general-purpose meta-model editor developed by Kyushu

University [9]. MetaIndexEditor is the domain-specific

model editor that provides editing specific model features,

using the meta-model described in eCore. As a trial, we

designed a data model indicated in figure 3, which can treat

Index as a feature model and make a traceability description

among Index and other development assets.

Figure 3 a data model based on FeatureModel

We defined Feature as an instance of Index, which has the

name, description, and definition of Group. Also, we defined

AssetContainer as an instance of IndexedContainer in

conjunction with Feature for traceability with development

assets. In general, FeatureModel can indicate a choice

among the types of associations between features, which can

be mandatory, optional, and alternative. So, we defined

these choices, each as instances of Relation and also defined

Description as the name in Relation. We produced an

experimental MetaIndexEditor to describe this

MetaIndexModel in Ecore and input it into

MetaModelEditor. Figure 4 is an actual screen of

MetaModelEditor.

Figure 4 MetaIndexEditor as a feature modeling editor

D. MetaIndexPlugin
MetaIndexModel can associate external assets with Index,

but there are many types of assets. Therefore, it is difficult

to handle assets universally. We enabled that we operated

MetaIndexModel from the external tool which dealt with the

various assets by developing a Plugin using MetaIndexAPI.

We developed MetaIndexPlugin for Astah and Astah GSN

as an example of the third-party tool at this moment.

7

International Journal of Advances in Software Engineering & Research Methodology
 Volume 3 : Issue 2 [ISSN 2374-1619]

 Publication Date : 30 December, 2016

Figure 5 Screen example of MetaIndexPlugin for astah

We developed another MetaIndexPlugin for the file system

to make the log folders into IndexedContainer as an example

of traceability in practical use.

Figure 6 Screen example of MetaIndexPlugin for the file

system

Also, we implemented a synchronized display function on

the plugin which automatically indicates an asset in

association with the index when a user chooses index in

MetaIndexEditor.

E. MetaIndexTools

We are enabled to associate and display traceabilities

between MetaIndexModel and assets using a third-party

modeling tool by implementing MetaIndexDB,

MetaIndexAPI, MetaIndexEditor, and MetaIndexPlugin.

Figure 7 Traceability indication examples

V. Case studies using a sample
model

We believe that it is effective to secure traceability using

MetaIndex model in various system development including

uncertainty. Therefore we inspected whether

MetaIndexTools was available for system development

having uncertainty. To confirm the utility of

MetaIndexTools, we made a simple example model and a

simple example application using MetaIndexTools. This

application provides a choice from three kinds of

information to display for the user and includes the

uncertainty.

Figure 8 Screen image of sample application

We chose an initially indicated screen due to the uncertainty

of this application. By using GSN analysis, we proved that

starting the application with the most viewed screen was

desired. To record the view count, we developed the log

output function that records the count of the button push-

downs in this application and also performed traceability

between a log output folder and log output feature.

8

International Journal of Advances in Software Engineering & Research Methodology
 Volume 3 : Issue 2 [ISSN 2374-1619]

 Publication Date : 30 December, 2016

Figure 9 Sample application model

We completed an evaluation experiment, in which three

subjects tried our sample application. From the log analysis,

we found that News View was the highest in the number of

viewing times by the user during the trial. We made

enhancements, choosing News View as an initial screen to

our sample application, following the experiment result.

Using MetaIndexTools, we could make traceability between

the feature of an initially indicated screen as an uncertainty

and the operational log files as operational assets.

VI. Concusion
We proposed and developed traceability tools for the model-

base development to achieve life cycle oriented system

development. Using a simple case study, it was confirmed

that MetaIndexTools could be effective for the life cycle

oriented system development. In future work, we will apply

this tool to larger system development and also develop

MetaIndexPlugin for various tools for model-based

development. We also have planned the speeding of

MetaIndexEditor so that it may be possible to treat a great

deal of Indexes without stress.

Acknowledgment

This work is partially supported by JSPS KAKENHI Grant

Number 15H05708.

References

[1] T.Nakanishi, K.Hisazumi, and A.Fukuda: A Framework to Manage

Uncertainty in System Development, IPSJ SIG Technical Report,
Vol.2015-SE-187, No.38, 2015(in Japanese)  

[2] Winkler, S., & Pilgrim, J. (2010). A survey of traceability in
requirements engineering and model-driven development. Software
and Systems Modeling (SoSyM), 9(4), 529-565.

[3] Drivalos, N., Kolovos, D. S., Paige, R. F., & Fernandes, K. J. (2008,
September). Engineering a DSL for software traceability. In
International Conference on Software Language Engineering (pp.
151-167). Springer Berlin Heidelberg.

[4] Beuche, D. (2012, September). Modeling and building software
product lines with pure:: variants. In Proceedings of the 16th

International Software Product Line Conference-Volume 2 (pp. 255-
255). ACM.

[5] http://astah.net

[6] Pohl, K., Böckle, G., & van Der Linden, F. J. (2005). Software
product line engineering: foundations, principles and techniques.
Springer Science & Business Media.

[7] Rosenberg, D., & Stephens, M. (2007). Use case driven object
modeling with UML. APress, Berkeley, USA.

[8] https://eclipse.org/modeling/emf/

[9] S.Hiya, K.Hisazumi, A.Fukuda, and Tsuneo Nakanishi: clooca: Web-
based tool for Domain-Specific Modeling, Proc. ACM/IEEE the 16th
Int. Conf. on Model Driven Engineering Languages and
Systems(MODELS 2013), 5pages,2013.  

