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Dynamics on a two-prey and one-predator system 

with hybrid functional responses 
 [Hunki Baek] 

 

Abstract—— In this paper, to depict the ecological world 

realistically, we adopt a two preys and one predator 

system with hybrid types of functional response, Holling 

type and Beddington-DeAngelis type. In fact,  we show 

that this system is dissipative and find a necessary 

condition for the existence of the predator species.  In 

addition, conditions for the persistence of the system are 

found. And we give a numerical example to attest to our 

theoretical results. Furthermore,  the existence of chaotic 

phenomena is illustrated by  bifurcation diagrams of the 

system.. 

Keywords— predator-prey system, Holling type, 

Beddington-DeAngelis type, dissipative system, persistence, 
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I.  Introduction 
The classical ecological models of interacting populations 

typically have focused on two-species continuous time 

systems with one predator and one prey.  Many researchers 

have studied about classical two-species continuous time 

systems for several functional responses such as Holling-

Tanner type ([3,5,16]), Beddington-DeAngelis type ([6,12]), 

ratio-dependent type([1,7]) and so on. However, it has been 

recognized that such classical models with two-species can 

describe only a small number of the phenomena that are 

commonly observed in nature.  For the reason, in recent 

years, many authors ([9,10,13,14,17,18]) have changed their 

concerns to the ecological models with three and more 

species. There are many ways to depict mathematically the 

changes in population of multi-species. One of basic idea of 

describing such phenomena is to consider another prey(x2) 

different from the prey x1. Moreover, because the prey x2 is a 

different species from the prey x1, a different functional 

response is needed to describe the relationship between the 

prey x2 and the predator y([2,15]). In fact, if one takes into 

consideration the handling time of the predator to capture 

the prey, one figures out that the predator has a Holling 

type-II functional response([11]) and if one considers the 

competitions of predators each other to catch the prey, 

Beddington-DeAngelis type functional response should be 

adopted([6,12]). Thus, in this paper, we consider the 

following a hybrid system with two-preys and one-predator. 
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Many researchers([9,10,14,15,17])  have concerned about  

ecological systems with three and more species like system 

(1) to understand  complex dynamical behaviors of 

ecological systems in the real world. Especially, the authors 

in [15] dealt with a prey-predator model with two-type 

functional response and impulsive biological control and 

investigated the existence of an asymptotically stable prey-

free periodic solution under some conditions and established 

the permanence conditions for the impulsive system. 

However, they did not study dynamical properties of the 

system without impulsive control strategy 

II. Main Results 
Obviously, the functions in the right hand sides of system 

(1) are continuous and have continuous partial derivatives 

on the state space R
3

+ = {(x,y,z)
T
 | x ≥ 0, y ≥ 0, z≥ 0} . 

Indeed, straightforward computation yields that they are 

Lipschizian on R
3

+. Thus the solution of system (1) with 

non-negative initial condition exists and is unique, as the 

solution of system (1) initiating in the non-negative octant is 

bounded. Moreover, it is easy to see that if x1(0) > 0, then 

x1(t) > 0 for all t >0. Same is true for x2 and y components. 

Therefore, we conclude clearly that the first octant R
3
+ is an 

invariant domain of system (1). 

 A system is said to be dissipative if all population 

initiating in R
3

+ are uniformly limited by their environment 

[7]. In fact, we have shown that system (1) is dissipative in 

the following theorem. 

 

Theorem 2.1 System (1) is dissipative.  

Proof. Since  dxi(t)/dt  ≤ xi(t)(ai- bixi(t)), i = 1,2,  we have 

limsupt→∞  xi(t) ≤ ai/b, i=1,2. Define V(t) = e1 x1(t) + e2 x2(t) 

+ y(t). Then dV(t)/dt ≤  a1(a1+1)e1/b1 +a2(a2+1)e2/b2 - m V(t), 

where m = min {1,d}. So, by comparison theorem, we 

obtain that V(t) ≤  M/m – (Me
-mt

)/m for t ≥ 0, where  M = 

a1(a1+1)e1/b1 + a2(a2+1)e2/b2. Thus  e1x1(t) + e2 x2(t) + y(t) ≤ 

M/m for sufficiently large t, which means that all species are 

uniformly bounded for any initial value in R
3

+. Therefore, 

system (1) is dissipative.  ￭ 

 

Theorem 2.2 A necessary condition for the predator 

species y to survive is 
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(2) 

 

Proof.  From, the third equation of system (1), we get  

 

  

 

 

(3) 

 

  

 

Then we have y(t) ≤ y0 e
At

, where A = -d + a1e1/(b1c)+ 

a2e2/(b2 ⍺ ). Thus for A < 0, limt→∞y(t)= 0. Hence, the 

condition (2) is a necessary condition for the survival of  the  

predator y. ￭ 

The Kolmogorov theorem assumes that the existence of 

either a stable equilibrium point or stable limit cycle 

behavior in the positive quadrant of phase space of a two-

dimensional (2D) dynamical system, provided certain 

conditions are satisfied ([8]). 

                                                                                                                            

 

 

(4) 

 

 

 

The subsystem (4) is a Kolmogorov system under the 

condition  

 

(5) 

 

Throughout this paper, we assume that the subsystem (4) 

satisfies the condition (5). By applying the local stability 

analysis ([4]) to a Kolmogorov system (4) we have the 

following results; 

(1) The equilibrium point E10=(0,0) always exists and  is a 

saddle point. 

(2) The equilibrium point E11=(a1/b1,0) always exists and 

is a saddle point under the condition (5). 

(3) The positive equilibrium point E12 = (x*,y*)exists, 

where 

                   

                                                                               (6)  

 

  and  it is a locally asymptotically stable point if the 

following condition holds: 

                                                                                                                                                                                                            

(7)  

 

Moreover, if the condition d < e1(a1- b1c)/(a1+b1c) holds, 

the solution to the subsystem (4) approaches to a stable limit 

cycle even if the system is not a Kolmogorov system. 

 

(

8)                                                                                                                                                                                        

                                                                             

 

 

The subsystem (8) is a Kolmogorov system if the 

following conditions are satisfied: 

 

(9) 

 

Elementary calculation yields  that there exist at most 

three nonnegative equilibrium points of subsystem (8). 

Moreover, the stability of such equilibrium points can be 

studies by applying the local stability analysis to the 

subsystem (8) as the previous case. Thus we summarize 

these results as follows: 

(1) The equilibrium point E20=(0,0) always exists and  is a 

saddle point. 

(2) The equilibrium point E21=(a2/b2,0) always exists and 

is also a saddle point under the condition (9). 

(3) The positive equilibrium point E22 = (ẋ, ẏ) exists, 

where 

 

 
 

and                                                                              (10) 

 

if the condition 0< ⍺d /e2 - d < ẋ  <a2/b2  holds. In [14], 

the authors have investigated the local stability of the 

equilibrium point E22. 

 

Theorem 2.3[14] The positive equilibrium point E22 = 

(ẋ,ẏ) if the Kolmogorov system (1) is locally asymptotically 

stable if one of the following sets of conditions is satisfied 

(1) e2 β ≥ 1, 

(2) e2 β < 1 and  Δ1
2
 - 4 Δ 2 ≤ 0, 

(3) e2 β < 1 and  Δ1
2
 - 4 Δ 2 > 0, with 0< ẋ ≤ R1 or R2≤ ẋ 

<1. However, the solution of subsystem (8) approaches to a 

stable limit cycle for R1 < ẋ < R2. Here  

Δ1= d(1- β e2)(d-e2)/(β b2e2
2
) ,  

Δ 2 = ⍺ d
2
 (1-e2 β)/(b2e2

2
β) , 

 R1= and  

R=  

The term persistence is given to systems in which strictly 

solutions do not approach the boundary of the non-negative 

cones as time goes to infinity. Therefore, for the continuous 

biological system, survival of all interacting species and the 

persistence are equivalent. 

 

Theorem 2.4 Suppose that system (1) has no non-trivial 

periodic solutions in the boundary planes and satisfies the 

hypothesis of Theorem 2.3 and  the condition e1(a1- 

b1c)/(a1+b1 c) < d < a1e1/(a1+b1c)} holds. Then the 

necessary conditions for the persistence of system (1) are 

 

                                                                  (11) 

 

  

(12) 

 

and the sufficient conditions for the persistence of  system 

(1) are 
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(13) 

 

(14) 

 

Proof. Note that the boundedness of system (1) is shown 

in 

Thoerem 2.1 and E12 is locally stable under Kolmogrov 

condition (9). Since E12 and E22 are locally stable by the 

assumptions, the signs of the eigenvalues λ2*and λ1 

determine the stability of the equilibrium points E4 = 

(x*,0,y*) and E5 = (0, ẋ,ẏ). In fact, if there are no non-trivial 

periodic solutions in the x2y plane and the equation (11) 

dose not hold(i.e. λ1< 0). Then there is an orbit in the 

positive cone, which approaches to E5. Hence, the condition 

(11) is one of the necessary conditions for the persistence. 

Similarly, we obtain the other necessary condition (12) for 

the persistence of system (1) by applying the same method 

as mentioned above to the equilibrium point E4.  

Now, we will use the abstract theorem of Freedman and 

Waltman [7] to figure out  sufficient conditions for the 

persistence of system (1). In order to do this, consider the 

growth functions f1, f2 and f3, where  

 

  

 

(15) 

 

 

 

Then it is shown that the following four conditions are 

satisfied: 

(1) Clearly, we have ∂fi/∂y < 0, ∂f3/∂xi > 0, i=1,2. 

(2) Each prey population grows up to its carrying capacity  

in the absence of predators, that is, f1(0,0,0) =  a > 0 and 

f2(0,0,0) = a > 0 and ∂fi/∂xi(x1,x2,0) = bi <0( i=1,2)  and 

f1(a1/b1,0,0) = 0 = f2(0,a2/b2,0). Furthermore, the predator 

population dies out in the absence of preys, that is, f3(0,0,0) 

= -d <0. 

(3) ∂f1/∂x2= 0 and ∂f2/∂x1= 0. There exists exactly one 

point E3 = (b1/a1,b2/a2,0) satisfying fi(b1/a1,b2/a2,0)=0, i=1,2. 

(4) In the absence of each prey species the predator can 

survive on the other prey. This is always true under the 

Kolmogrov conditions (5) and (9). There exists a unique 

E4=(x*,0,y*) and E5 = (0,ẋ,ẏ) satisfying f1(x*,0,y*) = 

f3(x*,0,y*) = f2(0,ẋ,ẏ) = f3(0,ẋ,ẏ)=0. According to the 

Kolmogrov conditions (5) and (9), we can get that 

f3(a1/b1,0,0) > 0 and f3(0,a2/b2,0) > 0 , respectively. 

(5) It follows from (5),(9),(13) and (14)  that the 

inequalities f3(a1/b1,a2/b2,0) > 0 , f1(0,ẋ,ẏ) > 0 and f2(x*,0,y*) 

> 0  hold. 

Therefore, by Freedman and Waltman theorem, system (1) 

persists under the hypotheses. ￭ 

In order to substantiate our theoretical results, we display 

a numerical example by using Runge-Kutta method of order 

4 for system (1) with initial value (1,1,1). 

To do this we fix the parameters in system (1) as follows: 

 

a1 = 1.5, a2 = 1, b1 = 1, b2 =2 , c = 1, d = 0.44, e1 

=0.8,e2=1,  

⍺ = 0.5 and β = 0.1. 

 

Then system (1) satisfies the condition of Theorem 2.4. 

There system (1) is persistent, which means that all species 

survive forever  when time goes up. In fact Figure 1 show 

such phenomena. 

 

Figure 1 (a) A phase portrait of system (1) with an initial 

condition (1.0,1.0,1.0) and  (b)-(d) time series for x1(t), 

x2(t) and y(t), respectively,  when a1 = 1.5, a2 = 1, b1 = 1, 

b2 =2 , c = 1, d = 0.44, e1 =0.8, e2=1, ⍺ = 0.5 and β = 0.1. 

III. Conclusion and Discussion 
 

In this paper, we have investigated a hybrid ecological 

system with two preys and one predator. Especially, we 

adopted Holling type II and Beddington-DeAngelis type 

functional responses. We have shown that this system is 

dissipative and persists under some conditions. And we have 

found out a suitable condition to survive the predator species. 

Now, in order to observe the dynamic complexities of 

system (1), numerically, we fix the parameters except d as 

follows: 

 

a1 = 1.5, a2 = 1, b1 = 1, b2 =2 , c = 1,  e1 =0.8,e2=1, ⍺ = 0.5 

and β = 0.1. 

 

Figure 2 Bifurcation diagrams of system (1) with respect 

to d : (a), (b) maxima for the preys x1(t) and x2(t), 

respectively ; (c) maxima for the predator y(t). 

Bifurcation diagrams of system (1) with respect to d  is 

exhibited in Figure 2 when  0 ≤ d ≤ 4.5. From Figure 2, we 

can figure out that system (1) undergoes various dynamical 

aspects such as periodic doubling bifurcations, periodic 

windows, chaotic regions and so on. 
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