

33

Multifaceted Trust Assessment Framework for

Container based Edge Computing Platform
Ehsan Mostajeran, Mohammad Fairus Khalid, Mohd Nizam Mohd Mydin, Bukhary Ikhwan Ismail, Khalid Mohammad

Saleem, Hong Ong

Abstract—In Edge Computing platform, services are

decentralized from cloud center to the edge of the platform

supporting on-premises and latency sensitive applications.

For this reason, traditional security mechanisms are not

suitable to ensure trustworthiness of distributed and multi-

tenant attributes of edge platform. Similarly by utilizing

Docker as edge server, trustworthiness of host, containers

and service becomes a high priority issue. Therefore in such

platform run-time security assessment of the edge stack must

be applied to ensure trustworthiness of resources and service.

In this paper, we propose multifaceted trust framework to

quantify trustworthiness of the edge servers based on

security assessment of the edge stack. A chain measurement

is applied to assessment process to allow insurance of the

effect of each edge server’s trustworthiness history on the

container orchestration.

Keywords—Edge Computing, Trust Framework, Docker

I. Introduction
Cloud computing gradually developed within past few

years. It has been among the top most adopted technology
since its appearance [1]. The idea to centralize computing
resource and storage has been solution for many of
enterprises such Google, Twitter, Facebook, etc. to handle
big data and its processing. However the only current
cloud architecture may not be technically capable of data
processing oriented scenarios with reasonable cost [2].
Processing huge amount of data produced at the edge and
on-premise, bandwidth-intensive and latency-sensitive
attributes of today’s applications [3] are reasons to call the
idea of distribution of computing resource. Therefore
Edge Computing [4] [5] is proposed as a distributed cloud
computing concept. The distribution of resources and
computing by pushing cloud service to the edge is thought
to make compatible architecture with the above matters at
the user side [2] while dealing with huge amount of data
wand required processing.

Ehsan Mostajeran, Mohammad Fairus Khalid, Mohd Nizam Mohd
Mydin, Bukhary Ikhwan Ismail, Khalid Mohammad Saleem, Hong Ong

Advanced Computing Lab, MIMOS Berhad
Kuala lumpur, Malaysia

Logically as a matter of cost it is more optimized to
push cloud service to the edge instead of sending big data
to cloud from the edge, and process it, and then return the
required information back to the user. So not only edge
computing is a promising concept to help today’s
enterprise requirements, it is capable to be a fundamental
layer for emerging technologies like IoT and Smart Cities.
Using edge computing concept with adoption of micro
services and container technology enables providers to
have faster and flexible services deployment at user level,
at the edge level of IoT platform [6] or any other edge-
oriented architecture to improves service quality and
response time [2].

Resource virtualization technology in different scales
has been solution for all size of companies to cut cloud
platform expenses. Currently this technology allows
virtualizing several types of resources such as hardware,
operating system, application, storage and network.
Recently container technology (process level
virtualization) has extremely become popular. Although
container technology is used since year 2000, (released by
FreeBSD), but recently Docker [7] introduced easier way
of deployment and shipment of virtual containers which
delivers huge advantages to cloud service providers in
case of cost and resource allocation. Creating an
abstraction of host resources such as namespaces and file
system, etc. [8] allows larger scale container deployment
ever [9], and public/private registries [10] to store images
eases distribution of build. Using libraries such as
libcontainer [11] to integrate with virtualization facility
given by Linux kernel has been replaced with traditional
Linux Container library [12] in Docker daemon. Such
library is used to create and run containers with isolated
shared kernel operation environment. This offers faster
deployment of services in larger scale with no
environment dependency.

Since Docker first release, it has incredibly improved
cloud service provisioning [13]. Ability of caching builds
improves automation of service deployment. Containers
consisting services are deployed using of host resources
abstractions which makes deployment faster and more
efficient in term of resource allocation. Containers
technology is also supported by check pointed and
restored, and easy migration between clusters. Data
interaction between container and volumes are more
sophisticated now. But with all these benefits,
trustworthiness and security of container technology has
been always questioned. Docker recent plans on security
and integrity of deployment, such as Notary [14], and

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 3 [ISSN 2250-3765]

Publication Date : 30 December, 2016

34

authentication and authorization plugins [15] are not yet
sufficient to say we have secure and trusted engine and
containers. There are several security bottlenecks of
current Docker engine and containers available. For
instance kernel namespaces have been targeted widely
since appearance of Docker [16]. Gaining privilege from
unprivileged container in different ways by unauthorized
user to compromise host and its running processes is
easier when host resources like kernel is shared with
containers.

To handle the above problem, trust assessment is one
of the solutions that provide trusted and secure
deployment workflow [17]. It is used to verify
trustworthiness by verifying security state of edge devices.
The state of each device where containers and services are
deployed must be assessed, and evidence of host state
reported back before deployment of containers and
service. In Edge computing, by utilizing Docker as its
infrastructure platform, trustworthiness of host, containers
and service becomes a high priority issue. Hosts at the
remote location must be trusted before deploying service.
The question arises on how to measure trustworthiness of
host, docker engine, containers and services in an
environment where environment is multi-tenant and
multiple separate application and services are hosted on
the same edge server with shared kernel which logically
increases the risk of service provisioning [5] [8].

In this work the goal is to provide a trust management
framework to integrate with container provisioning engine
for state evaluation of edge servers supporting a solid and
secure foundation for container based workload. This
system is able to identify vulnerability of edge server
security and configuration, and then categorize host
machines based on level of trust. The evaluation process
included multiple factors of risk, reliability and credibility
to perform chain state measurement to obtain host’s state
of trust. The rest of this paper is organized as follows.

II. Recent works
Trust in computing systems is a complex subject. From

its general concept to more specific scope of trust, for
instance trust in edge computing, can be built on several
factors. Factors like policy, reputation, history, feedback
and recommendation are examples that have been used
recently to build trustworthiness of computing systems
[18] [19]. With current rapid adoption of container
technology [20], measuring trustworthy of services on
container that deployed on shared kernel is more
challenging than ever.

Trustworthy of services on top of a shared kernel is as
important as trustworthy of whole cloud platform.
According to new generation of threats [16], in a
multitenant environment, a strong identification and
authentication control, integrity of resources and real time
auditing for vulnerabilities. Applying above necessary
preparations may allow us to conclude that service
provisioning is trusted but with the minimum threshold.
Within recent years of Docker release, enterprises have
achieved different approaches to build trustworthiness of
containers and services running inside containers. One
concept is that trustworthiness of service provisioning is
achievable based on identification and secure

communication by using TLS [21] between all entities. In
Docker Universal Control Plane (UCP), CloudFlare’s PKI
and TLS toolkit CFSSL [22] is used to handle key and
certificates among components in platform. In such
condition, it is denotable that service is provisioned by
trusted authority. The concept of root of trust is applied to
keys and certificates. Moreover trust can be obtained by
image author verification. Signing images is done by
Notary [14] upon pushing images to registry. This
indicates containers are deployed from images published
by verified publishers. Trustworthiness also can be build
based on trusted hardware and chain of trust like Intel and
OpenStack trusted containers technology [23] ensuring
service trustworthiness and integrity. But this method has
limitation of availability of resources, Trusted Platform
Module (TPM) [19]. The other way to implement trust is
to build software layer [24] to check integrity of images
and running containers. Twistlock defense system enables
separate access to Docker commands by authorization
plugin [15].

Basically a secure and trusted deployment workflow is
needed in order to have secure and trusted containers. One
main component participating in this workflow should be
a standalone service with concept of Container Deep
Inspection (CDI) [25] for vulnerabilities, authorization
capabilities and runtime defense based on storage,
memory space and networking, etc. at three layers of host,
daemon and container as well as registry. Remote
vulnerability assessment and state attestation has been
used in order to ensure trustworthiness of host machines
[26]. There are some security and configuration
assessment approaches [27], but lack of a framework that
run-time checks host, daemon and running containers
vulnerabilities based on security configuration (where risk
of each element is assigned precisely) is detected. IBM
Bluemix vulnerability advisor [28], Clair by CoreOS [29]
and vulnerability assessment by Flawcheck [30] are
implemented but operational entity is limited to images to
scan Common Vulnerabilities and Exposures (CVE) only.
Dealing with security and configuration of each edge
server requires run-time risk and reliability assessed. Both
likehood and impact of each security parameter of host,
daemon and containers should be well analyzed and
operation environment should not be limited to image or
container deployment level only. Meanwhile, in container
based cloud platform, trustworthiness of containers and
host machines cannot build based on single factor.
Multifaceted trust management is more capable to be
applied based on security and configuration elements.

III. Multifaceted Trust
Framework

Today trustworthiness of service running on top of
shared kernel containers in cloud edge computing platform
is more challenging than ever. Highly distributed cloud
resources at edge raises new issues of security and trust
that a centralized cloud platform may not have. From
service provider and consumer perspectives,
trustworthiness of service provisioning is mandatory to be
applied. Ensuring trustworthiness is a complex issue with
wide range of categories. In our framework,
trustworthiness of container based cloud service
provisioning is built based on host machine, daemon and

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 3 [ISSN 2250-3765]

Publication Date : 30 December, 2016

35

running containers security verification. Once process of
assessment is applied, main functions are called to
measures the state of machine according to the rule set
defined by administrators. Output of each function is
evidence to define the state of the device. In this work,
measurement is multifaceted and consists of four main
factors of risk, reliability, trust and credibility. Chain of
measurement is applied between functions to keep
interconnection between each state measurement. Once
early stage assessment functions are called, so then
trustworthiness of host machine is measured based on
evidence obtained from those functions. Periodical and
event-based measurements are implemented to apply
effect of history of host machine state in every time trust
measurement.

Adopting Center for Internet Security (CIS) Docker
security scripts [31] into our framework to function as rule
set for measuring current security configuration state of
host machine. This measurement is applied in three layers
of host, daemon and containers. Rule sets are
customizable and allow adding new parameters based on
requirements. Each security configuration elements of
host, daemon and container is called Ej which outputs a
Boolean value. When rule set is applied, result is sent to
chain measurement. Different functions in chain
measurements are applied which are discussed in next
sections.

A. Preliminaries

System model (distributed remote assessment).
Assessment is a protocol between Edge Prover (EP) and
Central Verifier (CV) where may have separate sets of
policies required for measurement process. EP is applied
with system security configuration in different layer of
host H, daemon D and container C. Assume we have set of
security parameter E indicates {W, P} meaning warn or
pass. State and integrity of device is measured based on
collected evidence. So freshness of evidence is required to
reflect current state of system. Evidence collected from
device must include all necessary parameters. Assessment
process may or may not be based on policy. So each set of
evidence may be differently measured according to policy.
All the assessment process must be performed based on
trustworthiness evidence and protocol. Figure 1 shows
system model context diagram.

Figure 1. Graphical view of system model

Terminology. Pair of devices (client-server) that are
engaged in process of assessment are called assessment
devices. Assessment is a process to query state or integrity
of remote device based on collected evidence. In order to
verify state or integrity of remote device, collecting and
measuring sets of parameters as evidence from the remote
device is performed. The process of verification of
collected evidence from remote device is called
measurement process. Collected evidence requires a
protocol to convey evidence to verifier [32].

Definition 1. Let ReSys(t) and RiSys(t) to be
reliability and risk functions of system at time t obtained
from measuring security parameters. EP is an Edge Prover
that is assigned to specific set of policies. State state(EP)
of each edge measures reliability and risk at three layers of
host, daemon and container of edge servers. Trust value is
then obtained from reliability and risk of each time state
assessment. Trust function Tr(t) is obtained based chain
measurement between current trust Tr(t) state and
credibility Cr(t) functions at time t. Credibility presents a
quantitative value of each edge device trustworthiness
history.

Definition 2. Let assessment function A(t) at time t a
set of assessments Ai, state measurement Si, trust Tr(t)
and credibility Cr(t) function, so we have A(t)={Ai, Si,
Tr(t), Cr(t)} at time t. A cycle to keep assessment updated
denotes A(t=i)={Ai(t=i), Si(t=i),{ Ai(t=i-1), Si(t=i-1),
Tr(t=i-1), Cr(t=i-1)}}.

B. Assessment Factor

1- Reliability function

Reliability of host machine affects reliability of service
provisioning of edge servers. In regard to reliability [33],
we consider two methods for this factor. The first method
is ReCont(t) reliability of each running containers at time
t. Once reliability of each container is obtained, then

reliability of all containers is calculated by ∏

[34], P(Ci) is result from rule set applied on running
containers with value total PASS.

The second method of this factor is reliability of
system which is obtained from reliability of three layers of
host, daemon, and container security and configuration.
To calculate reliability of system, firstly we must obtain
average security assessment of all containers. This is
prerequisite value for calculating reliability of system.
Therefore average reliability of running containers

Pave(C) is obtained by ∑
 ⁄ . In this equation,

P(Ci) is result from rule set applied on running containers
with value total PASS and N is number of running
containers. Assigning weightage to different software
stack is required in calculating reliability of system to
define importance of each layer. We assumed 3 level of
importance for host, daemon and container security
evaluation. Reliability of system at time t ReSys(t) is then
calculated by . In this equation
P(H) and P(D) values total number of pass obtained from
host and daemon layer assessment.

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 3 [ISSN 2250-3765]

Publication Date : 30 December, 2016

36

2- Risk function

Security of Docker daemon and running container
must be evaluated in a dynamic manner. Each of the
security elements must be analyzed according to impact
and possibility of occurrence. In this work, the likehood
and impact of all rule set elements are investigated.
According to element’s likehood, weightages are assigned
to each elements of rule set to define risk impact of
element, shown in Table 1 and 2. Chain state measurement
generates quantitative risk value from rule set. Either
quantitative or qualitative risk evaluation requires impact
of element and its likehood [35].

TABLE 1. LIKEHOOD AND IMPACT VALUE INITIALIZATION

Likehood
(probability)

Impact

Low Medium High

Low 1 3 5

Medium 2 5 8

High 3 7 11

TABLE 2. LIKEHOOD AND IMPACT VALUE INITIALIZATION OF

DAEMON ELEMENTS BASED ON CIS DOCKER BENCHMARK

[31]

Element (Ej)

V
a

lu
e

(σ
j)

Element (Ej)

V
a

lu
e

(σ
j)

Do not use lxc execution
driver

1 Setup a local registry mirror 8

Restrict network traffic
between containers

11
Do not use the aufs storage

driver
8

Set the logging level 5
Do not bind Docker to

another IP/Port or a Unix
socket

11

Allow Docker to make
changes to iptables

7
Configure TLS

authentication for Docker
daemon

11

Do not use insecure registries 11
Set default ulimit as

appropriate
8

Table 2 presents an example of assigning weightages
to elements according to impact of each elements defined
by [31]. By having these values, we propose two methods
in order to calculate risk. The first method is to calculate

risk of each running container by using ∑ ∑ ⁄ .

Risk of each running container is obtained from result of
each container security evaluation and its weightage or
impact [36]. In this equation, σj is weightage of each
security parameter Ej.

For calculating RiCont(t) risk of all containers we

propose equation ∑ ∑ ⁄ . In this equation

W(Ci) indicates result from rule set values total WARN,
and ʎi is weightage for each container. If the weightage of
ʎi is higher means that container is more important. This
feature can be used when different types of container are
running. So weightage is assigned according to type of
containers.

RiSys(t) is to calculate risk of system. In the equation
 ⁄ , Wave(C) is
average security evaluation of all containers that results
WARN, and α, β and γ are weightages which defines
importance of each of the layers of host, daemon and
container. If they all have equal importance then we need

to assign equal values to these variables, for example
assign 1 to each which means they are equal and have no
difference in importance.

3- Trust function

In our framework, each deployment process must have
verification of trustworthiness and enough credibility of
host machine upon creation of new container. So in order
to calculate Tr(t) trust at time t, we propose equation
below based on proposed logic by [37]. In this function
Cr(t) is credibility of host at time t, ReCont(t) is reliability
of container, ReSys(t) is reliability of system, RiCont(t) is
risk of containers and RiSys(t) is risk of system which are
explained in previous sections. There are weightages
defined in this equation as variables A to F to normalize
trust value and to indicate importance of each element.

The blow conditions must be applied for equation (1).

 Submissions of all weightages should be equal to
D, so A+B+C=D in order to normalization.

 Assigning values to E and F defines importance
between reliability and risk. If both are assigned
with same weightage then it means both have
similar level of importance. If E and F are
assigned with higher values than D, then it means
that risk is more important for cloud admin than
reliability. If D is assigned with higher weightage
than E and F, then means that reliability is more
important than risk.

 This equation is developed with assumption that
all values of ReSys(t), RiSys(t), RiCont(t),
ReCont(t) and even Cr(t) have range of value
between 0 and 1. Therefore with applying the first
condition, Tr(t) must also have range of value
between 0 and 1.

 If we assume Cr(t) = 0, and all security evaluation
parameters result WARN (all W values are equal
to 1, and all P are equal to 0) therefore we should
have ReSys(t)=0, RiSys(t)=1, RiCont(t)=1,
ReCont(t)=0, and for trust function we should
have as below, which is a logical statement.

4- Credibility function

So far we have obtained trust value from assessment of
each edge server. Implementing time manner assessment
provides record of trust values for each of edge servers.
These records are in fact credit of each host machine in
case of trustworthiness level. Therefore we proposed a
function to include trustworthiness history of host machine
in each time state assessment. To calculate credibility we
propose equation (2) as below.

 {

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 3 [ISSN 2250-3765]

Publication Date : 30 December, 2016

37

The blow conditions must be applied for equation (2).

 Submissions of all weightages of G, M and N
should be equal to U, so G+M+N=U.

 Assigning values to weightages of V and W are
used to define the importance of RiSys(t) and
RiCont(t). It means if they are assigned with same
value, both RiSys(t) and RiCont(t) have same
level of importance. If V and W are assigned with
higher weightage than U, then means risk is more
important than reliability and vice versa.

 Assigning values to weightages of G, M and N
define the importance between ReSys(t),
ReCont(t) and Tr(t-Δt). If M and N are assigned
with equal weightage then means that ReSys(t)
and ReCont(t) have same level of importance. If G
is assigned with higher weightage than M and N
then Tr(t-Δt) is more important than ReSys(t) and
ReCont(t) and vice versa. Δt is the difference in
time of evaluating trust. For example trust
evaluation cycle is every hour therefore Δt = 1
hour.

IV. Trust Function Verification

In order to verify trust function, we assume assessment
result of platform with random value of reliability of
container is 0.8 with risk 0.1 and credibility 0.5. We
investigated trust value based on risk of system to verify
whether value obtained from this equation is logical. We
have taken weightages of risk of system and risk of
running containers as main focus of observation. We
applied Hyperbolic Tangent [38] of trust function with
different values for weightages of system and running
containers as shown by equation (3). Hyperbolic Tangent
is used to limit the range and identifies the most accurate
calculation.

 [

]

It is expected that when risk of system approaching 1,
trust value must be reduced. Therefore as shown in figure
2, in order to apply trust function, weightages for risk of
system and risk of running containers must be assigned
with specific range of values to obtain well-reasoned trust
values in this scenario.

Figure 2. Trust function evaluation based on impact of security
evaluation parameters

In the above equations, there are weightages that are
assigned to define importance of each factor. From system
administrator’s perspective, importance of each factor
should be defined with range of values. This is supporting
the idea of allowing administrator to change importance of
each factor from time to time. For example, A0 is assigned
with value of X at time t0 to define high impact of
credibility in trust function, but it may also require lower
value of A1 = Y at time t0+1. Therefore we propose to
obtain weightage of each factor at time t by A=A1+(A2-
A1)tanh(A0t). Figure 2 reflects the trust value when the
risk is assigned with range of weightages. Figure 3 and 4
presents decrement and increment of impact of credibility
A0. We observed that A0 affects time of changing value
A1 to A2. For example if the impact is assigned as A1=3,
with lower value of A0, it is expected that change of
impact occurs within few hours to A2=2 in case of
decrement of impact of factor. And similarly is expected
that if the impact is assigned as A1=2, with higher value
of A0, it is expected that change of impact occurs within
few hours to A2=4.

Figure 3. Evaluation of impact of factor included in trust function

with decrement of impact

Figure 4. Evaluation of impact of factor included in trust function

with increment of impact

V. Conclusion

In this paper, we propose a run-time multifaceted trust
framework based on edge server’s security assessment.
Firstly, we have created a rule set using Center of Internet
Security Docker benchmark script to apply assessment.
Likehood and impact of security elements are measured,
and used in risk calculation. Secondly, the result obtained
from assessment process is used by framework to project
trustworthy level of edge server at three levels of host,
daemon and container. Lastly we used a chain
measurement to ensure credibility of edge server based on
trustworthy level. Using our approach in container

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 3 [ISSN 2250-3765]

Publication Date : 30 December, 2016

38

deployment workflow, trustworthiness of Docker servers
can be used as a measurement for policy management and
container orchestrator to provide more trusted edge
platform.

References
[1] L. Columbus, “Cloud Computing Adoption Continues

Accelerating In The Enterprise,” 2014. [Online]. Available:

www.forbes.com/sites/louiscolumbus/2014/11/22/cloud-
computing-adoption-continues-accelerating-in-the-enterprises.

[Accessed: 10-Jun-2016].

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing :
Vision and Challenges,” IEEE Internet Things J., pp. 1–10.

[3] S. Carlini, “The Drivers and Benefits of Edge Computing.”

Schneider Electric – Data Center Science Center, p. 8, 2016.
[4] G. Frantz, D. Freeman, and C. Link, “Extending the edge of the

cloud.” Texas Instruments, Dallas, Texas, pp. 1–5.

[5] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T.
Higashino, A. Iamnitchi, M. Barcellos, P. Felber, and E.

Riviere, “Edge-centric Computing: Vision and Challenges,”

ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp.
37–42, 2015.

[6] Chris Raphael, “Why IoT Edge Computing Is Crucial,”

rtinsights.com, 2015. [Online]. Available:
http://www.rtinsights.com/why-edge-computing-and-analytics-

is-crucial-for-the-iot/. [Accessed: 16-May-2016].

[7] “Docker: Build, Ship, and Run Any App, Anywhere.”
[Online]. Available: https://www.docker.com/. [Accessed: 15-

Jun-2016].

[8] T. Bui, “Analysis of Docker Security,” arXiv Prepr.
arXiv1501.02967, 2015.

[9] M. F. Bin Khalid, B. I. Bin Ismail, and M. N. M. Mydin,

“Performance Comparison of Image and Workload
Management of Edge Computing Using Different

Virtualization Technologies,” in 3rd International Conference

on Computer, Communication and Control Technology, 2016.
[10] Docker, “Docker Registry.” [Online]. Available:

https://docs.docker.com/registry/. [Accessed: 16-Jun-2016].

[11] Docker, “libcontainer.” [Online]. Available:
https://github.com/opencontainers/runc/tree/master/libcontainer

. [Accessed: 16-Jun-2016].
[12] I. Melia, S. Puri, K. Owens, K. Thirumalai, S. Yellumahanti, L.

Herrmann, M. Coggin, J. Fernandes, K. Craven, and D.

Juengst, “Linux Containers: Why They’re in Your Future and
What Has to Happen First.” Cisco, p. 11, 2014.

[13] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An

Updated Performance Comparison of Virtual Machines and
Linux Containers,” Performance Analysis of Systems and

Software (ISPASS), IEEE International Symposium On. IEEE.

pp. 171–172, 2015.
[14] Docker, “Getting started with Docker Notary,” 2016. [Online].

Available: https://docs.docker.com/notary/getting_started/.

[Accessed: 05-May-2016].
[15] Twistlock, “Docker Authorization Plugin,” 2015. [Online].

Available: https://github.com/twistlock/authz. [Accessed: 18-

Jun-2016].
[16] Aaron Grattafiori, “Understanding and Hardening Linux

Containers.” NCC Group, pp. 1–122, 2016.

[17] Cam Parry, “Docker Continuous Delivery Workflows.”
[Online]. Available: http://capgemini.github.io/devops/docker-

ci-workflows/. [Accessed: 05-May-2016].

[18] D. Artz and Y. Gil, “2007-A survey of trust in computer
science and the semantic web.pdf,” Web Semant. Sci. Serv.

Agents World Wide Web 5.2, pp. 58–71, 2007.

[19] F. Corradini, F. De Angelis, F. Ippoliti, and F. Marcantoni, “A
Survey of Trust Management Models for Cloud Computing,”

in Proceedings of the 5th International Conference on Cloud

Computing and Services Science (CLOSER), 2015, pp. 155–
162.

[20] “8 surprising facts about real Docker adoption,” DataDog,

2015. [Online]. Available: https://www.datadoghq.com/docker-
adoption/. [Accessed: 15-May-2016].

[21] E. Rescorla, “The Transport Layer Security (TLS) Protocol

Version 1.3.” Network Working Group, 2016.
[22] CloudFlare, “CFSSL: CloudFlare’s PKI and TLS toolkit.”

[Online]. Available: https://github.com/cloudflare/cfssl.

[Accessed: 10-Apr-2016].

[23] R. Yeluri and A. Gupta, “Trusted Docker Containers and
Trusted VMs in OpenStack.” OpenStack Summit, Vancouver,

2015.

[24] M. Bartock, P. Cichonski, J. Morello, and R. Yeluri, “DevOps
and Container Security.” Cybersecurity Innovation Forum,

2015.

[25] Scott McCarty (fatherlinux), “What is Deep Container
Inspection (DCI) and Why is it Important?,” Redhat. [Online].

Available: http://rhelblog.redhat.com/2015/09/03/what-is-deep-

container-inspection-dci-and-why-is-it-important/. [Accessed:
05-May-2016].

[26] Open Source Security Compliance Solution, “Manages

continuous scans of your infrastructure.” [Online]. Available:
https://github.com/OpenSCAP/openscap-daemon. [Accessed:

05-May-2016].

[27] “Docker Security Tools: Audit and Vulnerability Assessment,”
Alfresco Software Ltd, 2015. [Online]. Available:

https://www.alfresco.com/blogs/devops/2015/12/03/docker-

security-tools-audit-and-vulnerability-assessment/. [Accessed:
05-May-2016].

[28] Jim Doran, “Is your Docker container secure? Ask

Vulnerability Advisor!,” IBM. [Online]. Available:
https://developer.ibm.com/bluemix/2015/07/02/vulnerability-

advisor/. [Accessed: 07-May-2016].

[29] “Vulnerability Static Analysis for Containers,” CoreOS, 2015.
[Online]. Available: https://github.com/coreos/clair. [Accessed:

16-Jun-2016].
[30] A. Bettini, “Vulnerability Exploitation in Docker Container

Environments.” FlawCheck, Black Hat Europe, 2015.

[31] “Cis Security Benchmarks.” Center of Internet Security, 2015.
[32] T. Abera, N. Asokan, L. Davi, T. Darmstadt, F. Koushanfar, A.

Paverd, A.-R. Sadeghi, and G. Tsudik, “INVITED Things,

Trouble, Trust: On Building Trust in IoT Systems,” in
Proceedings of the 53rd Annual Design Automation

Conference. ACM, 2016.

[33] R. E. Barlow and F. Proschan, Statistical theory of reliability
and life testing. Rinehart & Winston Inc., 1975.

[34] R. Billinton and R. N. Allan, Reliability evaluation of

engineering systems- Concepts and techniques. Springer
Science & Business Media, 2013.

[35] T. Grandison and M. Sloman, “Trust Management Tools for

Internet Applications,” in International Conference on Trust
Management, 2003.

[36] H. Joh and Y. K. Malaiya, “Defining and assessing quantitative

security risk measures using vulnerability lifecycle and cvss
metrics,” in international conference on security and

management (SAM), 2011.

[37] James M. Sharpe and Charles H. Green, “A Note on Trust,”
vol. 62, no. 9, pp. 1904–1905, 2013.

[38] R. Doerfler, “Fast Approximation of the Tangent, Hyperbolic

Tangent, Exponential and Logarithmic Functions.” 2007.

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 3 [ISSN 2250-3765]

Publication Date : 30 December, 2016

