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Abstract - In recent years, computer systems belonging to large 

companies, governments as well as personal computers have been 

experiencing an increasing wave of attacks that disrupt their 

normal operation or leak sensitive data. In this context, this 

paper presents a hardware-based approach which aims at 

detecting several types of attacks that degrade system security. 

The approach is based on a dedicated watchdog, which is tightly 

connected to the processor bus. Compared to existing 

approaches, the proposed technique can be applied to any 

application code “as it is”, i.e., it does not need application code 

recompilation. Additionally, the approach does not use of any 

kind of supervisor software (e.g., an Operating System - OS) to 

manage memory usage. To validate the approach, a case-study 

based on the LEON3 softcore processor and security-vulnerable 

code snippets from benchmark test codes have been 

implemented. Experimental results indicate that this approach is 

able to detect an intrusion tentative for 100% of the test cases, 

while yielding low area overhead and negligible processor 

performance degradation. Moreover, attack detection latency 

depends on the user code complexity, which means that detection 

time can take from one up to two or three tens of machine clock 

cycles. 

Keywords - Hacker’s Attack, Malicious Code Injection, User 

Code Basic Block, Dynamic Integrity Checking, Secure 

Embedded System. 

I. Introduction 

The need to include security mechanisms in electronic 

devices has dramatically grown with the widespread use of 

such devices in our daily life. In this scenario this work 

presents a hardware-based approach (here defined as a 

watchdog connected to the processor bus) which aims at 

leveraging electronic systems’ security by detecting hackers’ 

attacks. The detection is done at runtime, when the hash of the 

basic block of instructions under execution is different from 

the one statically computed, during the compilation time. In 

this case, the computed hash value is observed to be different 

because of a hacker’s attack. The fundament behind the 

approach settles around the following actions: first, the user 

program is translated into a set of basic blocks. Second, the 

hash value for each basic block is computed by summing the 

opcode value of all instructions in the  basic  block.  And  

third, the hash value is stored in a CAM (Content-Addressable  
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Memory) used to directly map the first and last addresses of 

each basic block with its hash value. This CAM is instantiated 

as an internal block of a watchdog, which in turn is connected 

to the processor bus. At runtime, the watchdog monitors the 

instruction bus in order to identify basic blocks along with the 

user program currently under execution, compute their 

(dynamic) hash values and compare them against the hash 

values computed statically (at the compilation time). In this 

approach, every time the watchdog signals a mismatch 

comparison between both dynamic and static hashes, a 

potential attack is assumed to be detected.  

The present paper represents an improvement of the work 

first presented in [1, 2] in the sense that it is able to detect 

attacks on indirect system calls (i.e., function calls 

implemented with pointers). Moreover, the proposed approach 

is able to efficiently detect DMA Attacks [3,4] and Hardware 

Trojan-Triggered Attacks [5] that result in user code hash 

changes. 

II. Preliminaries 

The primary goal of attackers is to strive to achieve 

victim’s computer control. This goal is achieved by means of 

two mutually dependent steps: 

i) Inject attack code: The attacker provides an input string 

that is actually an executable binary code native to the 

machine being attacked. Typically, this code is simple and 

does something similar to exec(“sh”) to produce a root shell. 

ii) Change the control-flow execution: The control-flow 

execution is changed by executing the injected input string, 

which actually points to the attack code. 

The proposed approach is able to detect the most important 

types of attacks that degrade system’s security. These attack 

types are described hereafter: 

1) Stack Smashing Buffer Overflow Attack: 

Buffer overflow attacks [1,2,6] exploit a lack of bounds 

checking on the size of input being stored in a buffer array in 

memory. By writing data past the end of an allocated array, 

the attacker can make arbitrary changes to program state 

stored adjacent to the array. By far, the most common data 

structure to corrupt in this fashion is the stack, called a “stack 

smashing” or “buffer overflow” attack. 

Many C programs have buffer overflow vulnerabilities, 

both because the C language lacks array bounds checking, and 

because the culture of C programmers encourages a 

performance-oriented style that avoids error checking where 

possible. 
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2) DMA Attack: 

DMA is included in a number of connections, because it 

lets a connected device (such as a camcorder, network card, 

storage device or other useful accessory or internal PC card) 

transfer data between itself and the computer at the maximum 

speed possible, by using direct hardware access to read or 

write directly to main memory without any operating system 

(OS) supervision or interaction. The legitimate uses of such 

devices have led to wide adoption of DMA accessories and 

connections, and an attacker can equally use the same facility 

to create an accessory that will connect using the same port, 

and can then potentially gain direct access to part or all of the 

physical memory address space of the computer, bypassing all 

OS security mechanisms and any lock screen, to read all that 

the computer is doing, steal data or cryptographic keys, install 

or run spyware and other exploits, or modify the system to 

allow backdoors or other malware [3,4]. 

Preventing physical connections to such ports will prevent 

DMA attacks. On many computers, the connections 

implementing DMA can also be disabled within the BIOS or 

UEFI (Unified Extensible Firmware Interface) if unused, 

which depending on the device can nullify or reduce the 

potential for this type of exploit. Examples of connections that 

may allow DMA in some exploitable form include FireWire, 

CardBus, ExpressCard, Thunderbolt, PCI, and PCI Express. 

3) Hardware Trojan-Triggered Attack: 

An integrated circuit (IC) could provide satisfactory 

functionality for its designed specification, but also may 

contain malicious logic (i.e., Hardware Trojan: HT). HT can 

be embedded into the circuit such that it remains asleep until 

activated. Hardware Trojans can be naive, very simple 

modifications to the original circuit [5]. In general, HTs try to 

bypass or destroy major security concerns of any system by:  

leaking confidential information and secret keys covertly to 

the adversary (Confidentiality attack); changing the value of a 

certain register (Integrity attack); disabling, deranging or 

destroying the entire hardware or components of it 

(Availability attack). Traditional hardware testing strategies 

cannot effectively detect HTs because the probability of 

triggering HT during functional testing is extremely low. 

Related Works: 

Several efficient software-based as well as hardware-based 
dynamic integrity checking techniques [7,8] have been 
proposed in the literature. However, software-based techniques 
suffer from performance overheads as high as 60%, while 
hardware-based approaches result in average overheads of 
about 18% [9]. These are daunting numbers. Additionally, 
some of these approaches [9,10] need application code 
recompilation to compute specific information (hashes of 
application program’s instruction addresses and opcodes) that 
is later used at runtime to detect attacks. And finally, from the 
best of our knowledge, we could not find in the literature any 
work able to jointly detect the three above mentioned attack 
types. 

III.  The Proposed Approach 

The proposed approach is based on two specific structures 

(a) The implementation of a watchdog in hardware and (b) on 

the reservation of a dedicated CAM (Content-Addressable 

Memory) which sits beside the watchdog. In more detail, the 

approach works as follows (see Fig. 1a):  

- First, the user program is translated into a set of basic 

blocks. A basic block is a set of code instructions that is 

sequentially executed by the processor, without any 

conditional or unconditional branch. So a basic block is the 

existing code snippet between two consecutive branch 

instructions. A basic block always finishes by a branch 

instruction.  

- Second, the static hash value for each basic block is 

computed (at the compilation time) by summing (XOR 

operating) the opcode value of all instructions in the basic 

block.  

- Third, the static hash value is stored in a CAM used to 

directly map the first address of each basic block with its hash 

value and the number of instructions composing this code 

snippet (Fig. 1b). This CAM is instantiated as an internal 

block of a watchdog, which in turn is connected to the 

processor bus.  

- Fourth, at runtime, the watchdog monitors the instruction 

bus in order to identify basic blocks along with the user 

program currently under execution, compute their (dynamic) 

hash values and compare them against the static hash values. 

Every time the watchdog signals a mismatch comparison 

between both dynamic and static hashes, this means that the 

current sequence of instructions under execution is not the one 

expected and thus, a potential attack is assumed to be detected. 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 1. General architecture of the proposed approach:  (a) Block overview; 

(b) CAM memory structure. 
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Fig. 2 summarizes the internal blocks of the watchdog. As 

depicted, the watchdog is tightly connected to the processor 

pipeline by one side and to the instruction memory bus by the 

other side.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Internals of the Watchdog. 

 

Based on Fig. 2, the watchdog operation is as follows:  

1) The watchdog monitors some internal signals from the 

execution stage of the processor pipeline: 

- the bit “annul”, whose function is to indicate if the instruction 

that is leaving the Execution Stage of the pipeline will actually be 

executed by the processor or it will be discarded due to 

speculative execution. 

- the “Program Counter” (PC), which is saved into the Decision  

Block and is further used to identify the 1st instruction of basic 

blocks. 

2) If the current PC is actually executed in the pipeline, 

then the Decision Block acknowledges positively to the CAM 

Access Block, which searches in the CAM if the executed PC 

corresponds to the 1
st
 instruction of a basic block. If so, the 

CAM memory forwards: 
-  this instruction address and the number of instructions 

composing the basic block (computed previously by code static 

analysis) to the Hash Builder Block, and  

- the static hash value of such basic block to the Comparison 

Block. 

3) In the sequence, the Hash Builder Block computes, 

instruction by instruction, the dynamic hash value for the 

block under execution till the CPU reaches the last instruction 

of the basic block. Then, this dynamic value is sent to the 

Comparison Block. 

4) The Comparison Block compares the static hash value 

against the dynamic one, computed by the Hash Builder 

Block. If this comparison is true, no decision is taken; 

otherwise, an error indication is sent to the processor, which is 

used to interrupt code execution. 

From the above described, we can extract two conclusions: 

1) The size of the watchdog is constant and quite small 

since the complexity of the computation to be performed by 

the watchdog is relatively low: series of XOR logical 

operations in order to: (a) generate (dynamicaly) instructions’ 

hashes, (b) compare the static hash against the dynamic one at 

the end of a basic block, (c) detect the execution of the first 

instruction of a basic block, (d) count the number of 

instructions contained in a basic block and ultimately (e) 

access the CAM memory. 

2) The size of the CAM memory is variable; it depends 

on the user code complexity. In more detail, it depends on the 

number of basic blocks the code is devided into. Every first 

instruction address of each basic block is a CAM entry, which 

points to the block hash value and number of instructions 

contained in the basic block (Fig. 1b). 

IV. Experimental Results 

This approach was implemented on the LEON3 softcore 
processor [11]. The LEON3 is a synthesizable VHDL model of 
a 32-bit processor compliant with the SPARC V8 architecture. 
The model is highly configurable, and particularly suitable for 
system-on-a-chip (SoC) designs. Fig. 3 depicts the general 
block diagram of the processor core. Blocks indicated by (*) 
are optional and are included in the processor main architecture 
if selected by the designer. Therefore, the basic processor 
configuration is the LEON3 CPU Integer Unit, the AMBA 
AHB Master Interface and the AMBA Bus, which connects the 
CPU to the system memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. General block diagram of the LEON3 softcore processor. 

 
With the purpose of validating the proposed approach, test 

programs were implemented with pieces of known vulnerable 

C codes (see Table 1). These vulnerable pieces of C code were 

obtained from vulnerable test benchmarks published in the 

CVE (Common Vulnerabilities and Exposures) [12,13]. These 

code snippets were adapted and included into the test program 

source codes. Then, while running these programs the 

watchdog was evaluated. For 100% the code snippets’ 

executions, the watchdog was able to detect the changes 
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intentionally injected in the code, such as changes in the return 

addresses from system function calls. 
 

Vulnerable 
Programs 

CVE Number Severity 

Edbrowse CVE-2006-6909 10.0 high 

MADWiFi CVE-2006-6332 7.5 high 

OpenSER CVE-2006-6749 9.3 high 

Samba CVE-2007-0453 4.6 medium 

Sendmail CVE-2003-0681 7.5 high 

Wu-ftpd CVE-1999-0368 10.0 high 

Wu-ftpd CVE-2003-0466 10.0 high 

 

Table 1. Benchmark vulnerable code snippets [12,13]. 

 

 Table 2 shows the area overhead added by the watchdog 
implementation with respect to the LEON3 processor. The 
obtained numbers were computed for the couple (processor + 
watchdog) synthetized by the PlanAhead CAD tool for the 
Xilinx Spartan3E FPGA. It is worth noting that these numbers 
include the watchdog main body as depicted in Fig. 1a, leaving 
aside the CAM memory, whose number of entries is variable 
and depends on the user code complexity (i.e., it depends on 
the number of basic blocks in the code). This table depicts the 
resulting area overhead for the main FPGA infrastructure 
components (number of extra flip-flops: FLOP_LATCH, look-
up tables: LUT, multiplexers: MUXFX, I/O pins and SRAM 
cells: DMEM). As observed, the average area overhead after 
addition of the watchdog is 2.16% of the original LEON3 
processor area. 
 

 
Table 2. Area overhead yielded by the Watchdog implementation. 

V. Final Considerations 

This paper presented a hardware-based approach to protect 

systems from stack smashing attacks.  

 Experimental results show that this approach successfully 

detected 100% of the injected attacks under the analyzed 

situations. The approach yields low area overhead (2.61% for 

the case studied: LEON softcore processor mapped into a 

Xilinx Spartan3E FPGA. Moreover, no performance 

degradation was observed since the watchdog operates in 

parallel with processor execution. Finally, attack detection 

latency depends on the user code complexity, which means that 

detection time can take from one up to two or three tens of 

machine clock cycles. 

Currently, we are implementing a detailed case-study in 

order to compute the attack detection latency of the watchdog. 

Such latency, in more detail, depends on the distance the 

malware point is from the end of the basic block. In this 

context, by “malware point”, we understand the point where 

the user code is intentionally changed (by 

adding/removing/changing instructions) to damage or disable 

computers and computer systems. 
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Primitive Type Leon + 

Watchdog 

Watchdog 

Entity 

Area 

Overhead 

[%] 

FLOP_LATCH 2649 135 5.1% 

LUT 8026 109 1.36% 

MUXFX 663 4 0.6% 

IO 117 0 0% 

DMEM 13 0 0% 

Total 11,468 248 2.16% 
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