

23

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

Leveraging Embedded Systems’ Security by Hackers’

Attack Detection

Bruno C. Porcher, Raphael S. Ferreira, Fabian Vargas, Letícia Bolzani Poehls, Ariel Lutenberg, Federico Zacchigna

Abstract - In recent years, computer systems belonging to large

companies, governments as well as personal computers have been

experiencing an increasing wave of attacks that disrupt their

normal operation or leak sensitive data. In this context, this

paper presents a hardware-based approach which aims at

detecting several types of attacks that degrade system security.

The approach is based on a dedicated watchdog, which is tightly

connected to the processor bus. Compared to existing

approaches, the proposed technique can be applied to any

application code “as it is”, i.e., it does not need application code

recompilation. Additionally, the approach does not use of any

kind of supervisor software (e.g., an Operating System - OS) to

manage memory usage. To validate the approach, a case-study

based on the LEON3 softcore processor and security-vulnerable

code snippets from benchmark test codes have been

implemented. Experimental results indicate that this approach is

able to detect an intrusion tentative for 100% of the test cases,

while yielding low area overhead and negligible processor

performance degradation. Moreover, attack detection latency

depends on the user code complexity, which means that detection

time can take from one up to two or three tens of machine clock

cycles.

Keywords - Hacker’s Attack, Malicious Code Injection, User

Code Basic Block, Dynamic Integrity Checking, Secure

Embedded System.

I. Introduction

The need to include security mechanisms in electronic

devices has dramatically grown with the widespread use of

such devices in our daily life. In this scenario this work

presents a hardware-based approach (here defined as a

watchdog connected to the processor bus) which aims at

leveraging electronic systems’ security by detecting hackers’

attacks. The detection is done at runtime, when the hash of the

basic block of instructions under execution is different from

the one statically computed, during the compilation time. In

this case, the computed hash value is observed to be different

because of a hacker’s attack. The fundament behind the

approach settles around the following actions: first, the user

program is translated into a set of basic blocks. Second, the

hash value for each basic block is computed by summing the

opcode value of all instructions in the basic block. And

third, the hash value is stored in a CAM (Content-Addressable

Bruno C. Porcher, Raphael S. Ferreira, Fabian Vargas and Letícia Bolzani
Poehls are with the Catholic University – PUCRS, Electrical Engineering

Dept., Porto Alegre, Brazil

Ariel Lutenberg and Federico Zacchigna are with the University of Buenos
Aires – UBA, Engineering Faculty. Buenos Aires, Argentina

Memory) used to directly map the first and last addresses of

each basic block with its hash value. This CAM is instantiated

as an internal block of a watchdog, which in turn is connected

to the processor bus. At runtime, the watchdog monitors the

instruction bus in order to identify basic blocks along with the

user program currently under execution, compute their

(dynamic) hash values and compare them against the hash

values computed statically (at the compilation time). In this

approach, every time the watchdog signals a mismatch

comparison between both dynamic and static hashes, a

potential attack is assumed to be detected.

The present paper represents an improvement of the work

first presented in [1, 2] in the sense that it is able to detect

attacks on indirect system calls (i.e., function calls

implemented with pointers). Moreover, the proposed approach

is able to efficiently detect DMA Attacks [3,4] and Hardware

Trojan-Triggered Attacks [5] that result in user code hash

changes.

II. Preliminaries

The primary goal of attackers is to strive to achieve

victim’s computer control. This goal is achieved by means of

two mutually dependent steps:

i) Inject attack code: The attacker provides an input string

that is actually an executable binary code native to the

machine being attacked. Typically, this code is simple and

does something similar to exec(“sh”) to produce a root shell.

ii) Change the control-flow execution: The control-flow

execution is changed by executing the injected input string,

which actually points to the attack code.

The proposed approach is able to detect the most important

types of attacks that degrade system’s security. These attack

types are described hereafter:

1) Stack Smashing Buffer Overflow Attack:

Buffer overflow attacks [1,2,6] exploit a lack of bounds

checking on the size of input being stored in a buffer array in

memory. By writing data past the end of an allocated array,

the attacker can make arbitrary changes to program state

stored adjacent to the array. By far, the most common data

structure to corrupt in this fashion is the stack, called a “stack

smashing” or “buffer overflow” attack.

Many C programs have buffer overflow vulnerabilities,

both because the C language lacks array bounds checking, and

because the culture of C programmers encourages a

performance-oriented style that avoids error checking where

possible.

24

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

2) DMA Attack:

DMA is included in a number of connections, because it

lets a connected device (such as a camcorder, network card,

storage device or other useful accessory or internal PC card)

transfer data between itself and the computer at the maximum

speed possible, by using direct hardware access to read or

write directly to main memory without any operating system

(OS) supervision or interaction. The legitimate uses of such

devices have led to wide adoption of DMA accessories and

connections, and an attacker can equally use the same facility

to create an accessory that will connect using the same port,

and can then potentially gain direct access to part or all of the

physical memory address space of the computer, bypassing all

OS security mechanisms and any lock screen, to read all that

the computer is doing, steal data or cryptographic keys, install

or run spyware and other exploits, or modify the system to

allow backdoors or other malware [3,4].

Preventing physical connections to such ports will prevent

DMA attacks. On many computers, the connections

implementing DMA can also be disabled within the BIOS or

UEFI (Unified Extensible Firmware Interface) if unused,

which depending on the device can nullify or reduce the

potential for this type of exploit. Examples of connections that

may allow DMA in some exploitable form include FireWire,

CardBus, ExpressCard, Thunderbolt, PCI, and PCI Express.

3) Hardware Trojan-Triggered Attack:

An integrated circuit (IC) could provide satisfactory

functionality for its designed specification, but also may

contain malicious logic (i.e., Hardware Trojan: HT). HT can

be embedded into the circuit such that it remains asleep until

activated. Hardware Trojans can be naive, very simple

modifications to the original circuit [5]. In general, HTs try to

bypass or destroy major security concerns of any system by:

leaking confidential information and secret keys covertly to

the adversary (Confidentiality attack); changing the value of a

certain register (Integrity attack); disabling, deranging or

destroying the entire hardware or components of it

(Availability attack). Traditional hardware testing strategies

cannot effectively detect HTs because the probability of

triggering HT during functional testing is extremely low.

Related Works:

Several efficient software-based as well as hardware-based
dynamic integrity checking techniques [7,8] have been
proposed in the literature. However, software-based techniques
suffer from performance overheads as high as 60%, while
hardware-based approaches result in average overheads of
about 18% [9]. These are daunting numbers. Additionally,
some of these approaches [9,10] need application code
recompilation to compute specific information (hashes of
application program’s instruction addresses and opcodes) that
is later used at runtime to detect attacks. And finally, from the
best of our knowledge, we could not find in the literature any
work able to jointly detect the three above mentioned attack
types.

III. The Proposed Approach

The proposed approach is based on two specific structures

(a) The implementation of a watchdog in hardware and (b) on

the reservation of a dedicated CAM (Content-Addressable

Memory) which sits beside the watchdog. In more detail, the

approach works as follows (see Fig. 1a):

- First, the user program is translated into a set of basic

blocks. A basic block is a set of code instructions that is

sequentially executed by the processor, without any

conditional or unconditional branch. So a basic block is the

existing code snippet between two consecutive branch

instructions. A basic block always finishes by a branch

instruction.

- Second, the static hash value for each basic block is

computed (at the compilation time) by summing (XOR

operating) the opcode value of all instructions in the basic

block.

- Third, the static hash value is stored in a CAM used to

directly map the first address of each basic block with its hash

value and the number of instructions composing this code

snippet (Fig. 1b). This CAM is instantiated as an internal

block of a watchdog, which in turn is connected to the

processor bus.

- Fourth, at runtime, the watchdog monitors the instruction

bus in order to identify basic blocks along with the user

program currently under execution, compute their (dynamic)

hash values and compare them against the static hash values.

Every time the watchdog signals a mismatch comparison

between both dynamic and static hashes, this means that the

current sequence of instructions under execution is not the one

expected and thus, a potential attack is assumed to be detected.

Fig. 1. General architecture of the proposed approach: (a) Block overview;

(b) CAM memory structure.

Processor
Core

Watchdog

CAM Block

Instruction
Bus Instruction

Memory

(a)

(b)

Basic Block 1
Initial address
(32-bit length)

Basic Block 1
Opcode Hash
(24-bit length)

Basic Block 1
No. of Instructions

(8-bit length)

Basic Block 2
Initial address
(32-bit length)

Basic Block 2
Opcode Hash
(24-bit length)

Basic Block 2
No. of Instructions

(8-bit length)

Basic Block n
Initial address
(32-bit length)

Basic Block n
Opcode Hash
(24-bit length)

Basic Block n
No. of Instructions

(8-bit length)

- Addresses
- Opcodes

Instructions’
Addresses

(32-bit length)

https://en.wikipedia.org/wiki/Camcorder
https://en.wikipedia.org/wiki/Network_card
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/PC_card
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Lock_screen
https://en.wikipedia.org/wiki/Cryptographic_key
https://en.wikipedia.org/wiki/Spyware
https://en.wikipedia.org/wiki/Exploit_(computer_security)
https://en.wikipedia.org/wiki/Backdoor_(computing)
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/UEFI
https://en.wikipedia.org/wiki/IEEE_1394_interface
https://en.wikipedia.org/wiki/PC_Card#CardBus
https://en.wikipedia.org/wiki/ExpressCard
https://en.wikipedia.org/wiki/Thunderbolt_(interface)
https://en.wikipedia.org/wiki/Peripheral_Component_Interconnect
https://en.wikipedia.org/wiki/PCI_Express

25

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

Fig. 2 summarizes the internal blocks of the watchdog. As

depicted, the watchdog is tightly connected to the processor

pipeline by one side and to the instruction memory bus by the

other side.

Fig. 2. Internals of the Watchdog.

Based on Fig. 2, the watchdog operation is as follows:

1) The watchdog monitors some internal signals from the

execution stage of the processor pipeline:

- the bit “annul”, whose function is to indicate if the instruction

that is leaving the Execution Stage of the pipeline will actually be

executed by the processor or it will be discarded due to

speculative execution.

- the “Program Counter” (PC), which is saved into the Decision

Block and is further used to identify the 1st instruction of basic

blocks.

2) If the current PC is actually executed in the pipeline,

then the Decision Block acknowledges positively to the CAM

Access Block, which searches in the CAM if the executed PC

corresponds to the 1
st
 instruction of a basic block. If so, the

CAM memory forwards:
- this instruction address and the number of instructions

composing the basic block (computed previously by code static

analysis) to the Hash Builder Block, and

- the static hash value of such basic block to the Comparison

Block.

3) In the sequence, the Hash Builder Block computes,

instruction by instruction, the dynamic hash value for the

block under execution till the CPU reaches the last instruction

of the basic block. Then, this dynamic value is sent to the

Comparison Block.

4) The Comparison Block compares the static hash value

against the dynamic one, computed by the Hash Builder

Block. If this comparison is true, no decision is taken;

otherwise, an error indication is sent to the processor, which is

used to interrupt code execution.

From the above described, we can extract two conclusions:

1) The size of the watchdog is constant and quite small

since the complexity of the computation to be performed by

the watchdog is relatively low: series of XOR logical

operations in order to: (a) generate (dynamicaly) instructions’

hashes, (b) compare the static hash against the dynamic one at

the end of a basic block, (c) detect the execution of the first

instruction of a basic block, (d) count the number of

instructions contained in a basic block and ultimately (e)

access the CAM memory.

2) The size of the CAM memory is variable; it depends

on the user code complexity. In more detail, it depends on the

number of basic blocks the code is devided into. Every first

instruction address of each basic block is a CAM entry, which

points to the block hash value and number of instructions

contained in the basic block (Fig. 1b).

IV. Experimental Results

This approach was implemented on the LEON3 softcore
processor [11]. The LEON3 is a synthesizable VHDL model of
a 32-bit processor compliant with the SPARC V8 architecture.
The model is highly configurable, and particularly suitable for
system-on-a-chip (SoC) designs. Fig. 3 depicts the general
block diagram of the processor core. Blocks indicated by (*)
are optional and are included in the processor main architecture
if selected by the designer. Therefore, the basic processor
configuration is the LEON3 CPU Integer Unit, the AMBA
AHB Master Interface and the AMBA Bus, which connects the
CPU to the system memory.

Fig. 3. General block diagram of the LEON3 softcore processor.

With the purpose of validating the proposed approach, test

programs were implemented with pieces of known vulnerable

C codes (see Table 1). These vulnerable pieces of C code were

obtained from vulnerable test benchmarks published in the

CVE (Common Vulnerabilities and Exposures) [12,13]. These

code snippets were adapted and included into the test program

source codes. Then, while running these programs the

watchdog was evaluated. For 100% the code snippets’

executions, the watchdog was able to detect the changes

LEON3 CPU – Integer Unit (IU)

AHB Bus

FPU* Cache*

MMU*

AMBA AHB Master Interface

Peripherals

Co-Processor*

Decision
Block

Pipeline
Signals

(from the
Execution

Stage) PC
(32 bits)

Annul
(1 bit)

CAM Access
Block

From the
Instruction

Bus

Address
(32 bits)

Hash
Builder
Block

(1) Initial basic block address

(2) Block size (# of instructions in the block)
(3) Block static hash value
(4) Block dynamic hash value

Comparison
Block

 Error
 Indication

(to processor

 interrupt)

Watchdog

(1) (2)
(3)

CAM
Memory

Ack

Address (32 bits)

(4)

http://www.sparc.org/

26

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

intentionally injected in the code, such as changes in the return

addresses from system function calls.

Vulnerable
Programs

CVE Number Severity

Edbrowse CVE-2006-6909 10.0 high

MADWiFi CVE-2006-6332 7.5 high

OpenSER CVE-2006-6749 9.3 high

Samba CVE-2007-0453 4.6 medium

Sendmail CVE-2003-0681 7.5 high

Wu-ftpd CVE-1999-0368 10.0 high

Wu-ftpd CVE-2003-0466 10.0 high

Table 1. Benchmark vulnerable code snippets [12,13].

 Table 2 shows the area overhead added by the watchdog
implementation with respect to the LEON3 processor. The
obtained numbers were computed for the couple (processor +
watchdog) synthetized by the PlanAhead CAD tool for the
Xilinx Spartan3E FPGA. It is worth noting that these numbers
include the watchdog main body as depicted in Fig. 1a, leaving
aside the CAM memory, whose number of entries is variable
and depends on the user code complexity (i.e., it depends on
the number of basic blocks in the code). This table depicts the
resulting area overhead for the main FPGA infrastructure
components (number of extra flip-flops: FLOP_LATCH, look-
up tables: LUT, multiplexers: MUXFX, I/O pins and SRAM
cells: DMEM). As observed, the average area overhead after
addition of the watchdog is 2.16% of the original LEON3
processor area.

Table 2. Area overhead yielded by the Watchdog implementation.

V. Final Considerations

This paper presented a hardware-based approach to protect

systems from stack smashing attacks.

 Experimental results show that this approach successfully

detected 100% of the injected attacks under the analyzed

situations. The approach yields low area overhead (2.61% for

the case studied: LEON softcore processor mapped into a

Xilinx Spartan3E FPGA. Moreover, no performance

degradation was observed since the watchdog operates in

parallel with processor execution. Finally, attack detection

latency depends on the user code complexity, which means that

detection time can take from one up to two or three tens of

machine clock cycles.

Currently, we are implementing a detailed case-study in

order to compute the attack detection latency of the watchdog.

Such latency, in more detail, depends on the distance the

malware point is from the end of the basic block. In this

context, by “malware point”, we understand the point where

the user code is intentionally changed (by

adding/removing/changing instructions) to damage or disable

computers and computer systems.

Acknowledgment

This work has been supported in part by CNPq (National Science
Foundation, Brazil) under contract n. 306619/2015-6 (PQ) and
Hewlett-Packard Brazil Ltd. using incentives of Brazilian Informatics
Law (8.2.48 from 1991).

References

[1] R. Segabinazzi Ferreira, F. Vargas. “ShadowStack: A new approach for

secure program execution”, Microelectronics and Reliability Journal,

55(9) August 2015, pp. 2077-2081.

[2] R. Segabinazzi Ferreira, F. Vargas, L. Bolzani Poehls. “Hardware-Based

Stack Smashing Attack Detection & Preliminaries on Recovery

Procedure”, 4th International Conference On Advances in Computing,
Control and Networking - ACCN 2016, Bangkok, Thailand, May 07-08,

2016, pp. 17-20 (DOI: 10.15224/978-1-63248-095-8-05).

[3] M. Dornseif, “0wned by an iPod”, Proceedings of the 2nd PacSec

Applied Security Conference, November 2004.

[4] A. K. Kanuparthi, R. Karri, G. Ormazabal, S. K. Addepalli, “A High-

Performance, Low-Overhead Microarchitecture for Secure Program

Execution”, 2012 IEEE 30th International Conference on Computer
Design, ICCD 2012, Montreal, Canada, 9/30/12-10/03/12, pp. 102-107.

[5] A. Aliyu, A. Bello, U. Joda Mohammed, I. Hussaini Alhassan.
“Hardware Trojan Model For Attack And Detection Techniques”,

International Journal of Scientific & Technology Research, Vol. 3, Issue

3, March 2014, pp. 102-105.

[6] B. P. Miller, D. Koski, C. Pheow Lee, V. Maganty, R. Murthy, A.

Natarajan, J. Steidl. “Fuzz Revisited: A Reexamination of the Reliability
of UNIX Utilities and Services”, Report: University of Wisconsin, 1995.

[7] M. L. Corliss, E. C. Lewis, A. Roth, “Using DISE to Protect Return

Addresses from Attack”, Workshop on Architectural Support for

Security and Anti-Virus (WASSA), Oct. 2004.

[8] Y. Park., Z. Zhang, G. Lee, “Microarchitectural Protection Against

Stack-Based Buffer Overflow Attacks”, IEEE Micro, vol. 26 , issue 4,
July-Aug. 2006.

[9] A. K. Kanuparthi, R. Karri, G. Ormazabal, S. Addepalli, "A High-
Performance, Low-Overhead Microarchitecture for Secure Program

Execution", IEEE International Conference on Computer Design

(ICCD), Oct 2012, Montreal, Canada.

[10] M. A. Schuette, J. P. Shen, “Processor Control Flow Monitoring Using

Signatured Instruction Streams”, IEEE Transactions on Computers, vol.
36, no. 3, March 1987, pp. 264-276.

[11] URL: http://gaisler.com/index.php/products/processors/leon3. Last visit:
July 2016.

[12] Common Vulnerabilities and Exposures - The Standard for Information

Security Vulnerability Names. URL: https://cve.mitre.org/. Last access:

July 2016.

[13] National Vulnerability Database - vulnerability search. URL:

https://web.nvd.nist.gov/view/vuln/search. Last access: July 2016.

Primitive Type Leon +

Watchdog

Watchdog

Entity

Area

Overhead

[%]

FLOP_LATCH 2649 135 5.1%

LUT 8026 109 1.36%

MUXFX 663 4 0.6%

IO 117 0 0%

DMEM 13 0 0%

Total 11,468 248 2.16%

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=35278
http://gaisler.com/index.php/products/processors/leon3
https://cve.mitre.org/

