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Abstract—TCP Incast is a pathological behavior of TCP 

that results in gross under-utilization of link capacity in certain 

many-to-one communication patterns. The many-to-one 

communication is the main transmission mode in data center 

networks. In this paper, we modify the most famous delay-

based TCP, Vegas, and propose a new congestion control 

mechanism for data center networks. The proposed DCVegas 

can quickly and appropriately adjust its congestion window 

size without the special help of the intermediate nodes. 

Through extensive NS-2 simulations, the results of DCVegas 

are compared with that of IA-TCP and TCP NewReno. 

DCVegas outperforms IA-TCP and NewReno in a variety of 

conditions. The proposed DCVegas maintains the end-to-end 

approach and effectively avoids the occurrence of TCP Incast 

in data center networks. 
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I.  Introduction 
Nowadays, data center networks have become a key 

resource to provide online services such as web search, 
social networking, cloud computing, etc. Many online 
service providers such as Google, Amazon, Microsoft, 
Facebook and IBM have vastly invested in building data 
center networks to support large scale computing power and 
storage. To ensure the integrity of data transmission, the 
majority of data centers use TCP as its default transport 
protocol [6][11]. However, the high-bandwidth and low-
latency environment of data centers is different from the 
TCP original assumptions [11]. When the servers send the 
requested to the client, there will be a lot of data into the 
switch at the same time. The switch may suffer buffer 
overflow and Incast congestion. It will cause lots of packet 
loss and network collapse, known as TCP Incast. 

Delay-based TCP comes with a more sensitive 
congestion control feature is confirmed performs better than 
loss-based TCP in homogeneous environments [9]. Due to a 
data center network can be a homogeneous environment, it’s 
no need to consider the competition problem between 
different variants of TCP. Therefore, we modify the most 
famous delay-based TCP, Vegas, and propose a new 
congestion control mechanism for data center networks. The 
proposed Data Center Vegas (DCVegas) can quickly and 
appropriately adjust its congestion window size without the 
special help of the intermediate nodes.  
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DCVegas maintains the end-to-end approach and 
features two improvements: (1) A more positive window 
adjustment in the slow start phase. DCVegas estimates the 
amount of extra data that kept in the bottleneck and 
increases its congestion window size aggressively if the 
amount of extra data is less than the predefined parameter γ. 
Thus DCVegas can effectively utilize the bandwidth at the 
beginning of transmission without packet loss. (2) An 
improved congestion avoidance mechanism. Traditional 
TCP adjusts its congestion window linearly in the 
congestion avoidance phase. It is too sluggish for data center 
networks. DCVegas employs the history and the estimated 
amount of extra data to guide the window size changes. The 
new mechanism can more quickly and appropriately adjust 
its window size, and utilize the bandwidth. 

Through the extensive NS-2 simulations, the results of 
DCVegas are compared with that of IA-TCP and TCP 
NewReno. DCVegas outperforms IA-TCP and NewReno in 
a variety of conditions. The rest of this paper is organized as 
follows. The related work is described in Section 2. Section 
3 presents the proposed mechanism, DCVegas. Section 4 
discusses the results of NS-2 simulations. Finally, the 
conclusions are presented in Section 5. 

II. Related Work 
In this section we first describe the TCP Incast problem 

and then depict the TCP Vegas, the base of the proposed 

DCVegas and finally describe the IA-TCP that is a famous 

TCP variant designed for data center networks. 

A. TCP Incast 
The TCP Incast problem was first reported by Nagle et 

al. [1] in the design of scalable storage architecture. Data 
center networks provides distributed service to satisfy the 
request of different users. When the client sends the 
information requested to the servers, the data will be 
transmitted to the client through the bottlenecks between 
switch and client, and then formation of many-to-one 
transmission mode. With the increasing synchronous 
transmission of the servers, there will be a lot of data into 
the switch at the same time, and also competing for the same 
output port. Therefore, the switch will result in a buffer 
overflow caused lot of packet loss. In the meantime, if the 
Retransmission Timeout (RTO) setting is not suitable 
[7][10].(The default RTOmin of traditional TCP is set to 200 
ms, while the RTT can be less than 250 μs in data center 
networks [2].) It will cause network collapse and bandwidth 
utilization decrease, known as TCP Incast. 

B. TCP Vegas 
Vegas adopts a more sophisticated bandwidth estimation 

scheme that tries to avoid rather than to react to congestion 
[3]. It uses the measured RTT to accurately calculate the 
amount of data packets that a source can send. Vegas 
calculates the extra data (Δ) and doubles its congestion 
window every other RTT. Vegas estimates a proper amount 
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of extra data to be kept in the network pipe and controls the 
congestion window size accordingly. It records the RTT and 
sets BaseRTT to the minimum of ever measured round-trip 
times. The amount of extra data (Δ) is estimated as follows: 

Δ = (Expected − Actual) × BaseRTT,                 (1) 

where Expected throughput is the CWND divided by 
BaseRTT, and Actual throughput represents the CWND 
divided by the newly measured smoothed-RTT.  When the 
amount of Δ is greater than γ, Vegas leaves the slow-start 
phase. The CWND is kept constant when the Δ is between 
two thresholds α and β. If Δ is greater than β, the CWND 
will be reduced. On the other hand, if the Δ is smaller than α, 
the connection may be under utilizing the available 
bandwidth. Hence, the CWND will be increased. The rule 
for congestion window adjustment can be expressed as 
follows: 

,

.,

,1

,1















otherwiseCWND

ifCWND

ifCWND

CWND 



                  (2) 

C. IA-TCP 
Hwang et al. proposed a rate based congestion control 

algorithm, called IA-TCP [2]. This algorithm controls the 
total number of packets injected into the network pipe to 
meet the bandwidth delay-product (BDP). IA-TCP regulates 
the total number of outstanding data packets so that it does 
not exceed the path BDP. The aggregator controls the 
window size of the workers and then adds Δ(s) to the RTTmin 
for fine-grained rate control. The data packet rate is set to 
equation (3):  
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where MSS denotes the maximum segment size, n is the 
total number of concurrent connections, and wi is the 
window size of the ith connection. IA-TCP control the 
window sizes of all connections to be equal to W for 
simplicity and fairness between the connections. Then they 
have the window size W from equation (4) as follows: 

n
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                   (4) 

 

Figure 1.  Example of random delay for the first ACK period 

Even though the total number of outstanding packets 
may be maintained, if all the workers send their data in a 
synchronized fashion, which occurs more often than not, 

then it may still cause network overflow. Fig. 1 shows an 
example when a random delay is given for each connection 
for the first ACK, so that all outstanding packets are timely 
distributed over the path with n/(RTTmin+Δ) of mean 
interval from the next period. 

III. Proposed Method 
A data center network can be a homogeneous network 

environment in which every node adopts the same TCP 
version. This is a good opportunity to perform the delay-
based TCP that is considered outperforms loss-based TCP in 
such environments. Therefore, we modify the most famous 
delay-based TCP, Vegas, and propose a new congestion 
control mechanism for data center networks, named Data 
Center Vegas (DCVegas). DCVegas is a sender-sided 
modification and hence it can be implemented solely at the 
end host. DCVegas enhances the slow start and congestion 
avoidance phase of Vegas. The details are described as 
follows. 

A. Slow Start Phase 
In slow start phase, TCP Vegas doubles the size of its 

congestion window only every other RTT. Such increasing 
speed is too conservative for data center networks. To be 
able to quickly make good use of link bandwidth in the 
connection initiation phase. The congestion window of 
DCVegas is adjusted every RTT instead of every other RTT. 
Furthermore, DCVegas increases its window size by 1.5 
segment when it receives an ACK, as shown in equation (5): 

CWND = CWND + 1.5                         (5) 

To prevent packet loss in the slow start phase, we  adjust 
γ to 0.5, a more sensitive parameter. When the amount of 
extra data (Δ) is greater than γ, DCVegas leaves its slow 
start phase and enters the congestion avoidance phase. 
Especially, Vegas reduces the congestion window size by 
1/8 when it leaves the slow start phase. We believe such 
reduction is unnecessary to DCVegas. Because the γ is 
setting to a small value. Therefore, DCVegas keeps the same 
window size when it enters the congestion avoidance phase. 

B. Congestion Avoidance Phase 
In data center networks, servers may be configured a big 

server request unit (SRU). In such situation, a TCP 
connection may enter the congestion avoidance phase to 
complete the transmission. Therefore, the congestion 
avoidance mechanism also needs to be improved. 

TCP Vegas updates its congestion window linearly in the 
congestion avoidance phase, it is too sluggish for a high 
BDP network [8]. If Δ < α, the connection may be under 
utilizing the available bandwidth. For the increment of 
congestion window, DCVegas has the history to guide the 
window size changes. DCVegas records the number of 
consecutive increments due to Δ < α and refers to this value 
as succ. Whenever the CWND should be increased due to Δ 
< α, it is updated as follows: 

CWND = CWND + (β - ∆) × succ               (6) 

When first estimation Δ < α, continuous occurrence Δ < 
α (succ) will be denoted by 1. The congestion window size 
will be increased by (β - Δ). The next consecutive estimation 
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of Δ < α, that means network are still have idle bandwidth 
can be used. The congestion window size will be increased 
by (β - Δ) × 2, and so on. The succ will be reset whenever Δ 
≥ α. The idea is that if the increment was successful, it might 
be the case that there is enough bandwidth and it is 
worthwhile to move to a more aggressive increasing strategy. 
In addition, to ensure that the CWND will not be increased 
too fast, DCVegas can at most double the size of CWND for 
every estimation of Δ < α. 

In aspect of reducing CWND, when measured Δ > β, we 
consider that network may beginning congestion. DCVegas 
will make decrease CWND more serious. DCVegas uses the 
difference of Δ and (α + β) / 2 as the guide for every 
estimation of Δ > β. The adjustment rule as shown in 
equation (7): 

CWND = CWND - (∆- ((α + β) / 2))              (7) 

To reduce the bursty effect of increment, the incr is 
served as the increment amount of congestion window after 
each Acknowledgement Packet is received by a DCVegas 
source. If Δ between β and (α + β) / 2, CWND will decrease 
1, the incr and succ will be reset to zero. When Δ between α 
and (α + β) / 2, the incr will be set to (1 / CWND), and succ 
will be reset. When Δ = (α + β) / 2, that means network 
currently used in good, we don’t need to adjust CWND. Due 
to data center networks have the characteristic of high-
bandwidth and low-latency. The congestion index α and β of 
DCVegas is set to 1 and 2, respectively. 

IV. Performance Evaluation 
Figure 2 shows the simulation network topology. Link 

bandwidth is set to 1 Gbps or 10 Gbps. Each link delay is 25 
μs. Depending on different simulation scenarios, the 
bottleneck buffer can be 256 K, 1 M or 4 M bytes. Packet 
size is fixed at 1000 bytes. The RTOmin of all TCP variants 
are set to 20 ms. 

 
Figure 2.  Data center networks topology  

TABLE I.  DATA CENTER TRAFFIC: APPLICATIONS AND     

PERFORMANCE REQUIREMENTS 

Traffic Type Example Requirements 

Mice traffic 
(< 100 KB) 

Google Search, Facebook 
Short response 
times 

Cat traffic 

(100 KB-5 MB) 

Picasa, YouTube, 

Facebook photos 
Low latency 

Elephant traffic  

(> 5 MB) 

Software updates, Video 

On-demand 

High 

throughput 

 

From the previous literature [4][5], traffic in data center 
networks is classified mainly into three types: (i) Mice 
traffic - the queries form the mice traffic. Majority of the 
traffic in a data center network is query traffic and its data 
transmission volume is usually less. (ii) Cat traffic – the 
control state and co-ordination messages form the cat traffic  
and (iii) Elephant traffic - the large updates form the 
elephant traffic. The different traffic types in data center 
networks, their applications and performance requirements 
are summarized in Table I. 

According to these three transmission modes, we present 
the simulation results of DCVegas and compare that with 
the results of IA-TCP and TCP NewReno by NS-2. 

A. Cat Traffic 
In data center network, the most common scenarios is set  

SRU to 256 KB [2]. Fig. 3 and Fig. 4 show the goodput of 
NewReno, IA-TCP and DCVegas.  

(a) NewReno 

(b) IA-TCP 

 (c) DCVegas 

Figure 3.  The goodput of three TCP variants. The link bandwidth is 1 

Gbps, bottleneck buffer size is 256 K/1 M/4 M bytes and SRU is 256 KB. 

As shown in Fig. 3, the goodput of DCVegas and IA-
TCP is better than that of NewReno. Because NewReno may 
introduce packet loss by itself, so it cannot fully utilize the  
network bandwidth. With the knowledge of the number of 
concurrent server, IA-TCP computes the product of 
bottleneck bandwidth and the minimum RTT of connections. 
It equally distributes the maximum window size to each 
server. The mechanism effectively avoids the packet loss. 
However, IA-TCP does not consider the buffer of 
intermediate node, which also is a considerable network 
resource. When the number of servers is 1, 2 and 4, the 
allocated CWND of IA-TCP would be too conservative. In 
such cases DCVegas creates 2.9%, 4.4% and 0.7% 
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performance improvement as compared with IA-TCP, 
respectively. The mechanism of DCVegas can quickly and 
appropriately adjust its window size, and thus utilize the 
bandwidth without packet loss. The performance of 
DCVegas is the best. 

In Fig.4, when the number of servers is 128, buffer size 
is 1 M bytes, NewReno injects serious packet loss and 
results in performance collapse. In such situation, both 
DCVegas and IA-TCP create 22% performance 
improvement as compared with NewReno. IA-TCP allocates 
maximum window size for each server in advance, so it will 
not incur packet loss. Due to the sensitive congestion control 
and the bursty nature of TCP, DCVegas enters the 
congestion avoidance phase too early and postpones the  
increasing of window size. Thus, when the number of 
servers is 4 and 8, the goodput of IA-TCP is greater than 
DCVegas. However, when the number of server is 16, 
DCVegas outperforms IA-TCP about 2.7%. In general, both 
DCVegas and IA-TCP have a good performance in these 
simulation scenarios. 

 

(a) NewReno  

(b) IA-TCP 

(c) DCVegas 

Figure 4.  The goodput of three TCP variants. The link bandwidth is 10 

Gbps, bottleneck buffer size is 1 M/4 M bytes and SRU is 256 KB. 

B. Mice Traffic 

 

          (a) number of servers = 8                      (b) number of servers = 64 

Figure 5.  The transmission completion time.  The link bandwidth is 1 

Gbps and SRU is 100 KB. 

 

(a) number of servers = 8                  (b) number of servers = 64 

Figure 6.  The transmission completion time.  The link bandwidth is 10 

Gbps and SRU is 100 KB. 

In mice traffic mode, the SRU of each server is set to 
100 KB. We compares the transmission completion time of 
TCP NewReno, IA-TCP and DCVegas. When the SRU is 
small, all the packet transmission is likely complete in slow 
start phase. Since DCVegas has a more positive window 
adjustment scheme in the slow start phase, so the 
transmission completion time of DCVegas is shorter than 
that of NewReno and IA-TCP, as shown in Fig. 5 and Fig. 6. 

C. Elephant Traffic 

 

(a) number of servers = 8                  (b) number of servers = 64 

Figure 7.  The transmission completion time.  The link bandwidth is 1 

Gbps and SRU is 5 MB. 
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(a) number of servers = 8                  (b) number of servers = 64 

Figure 8.  The transmission completion time.  The link bandwidth is 10 
Gbps and SRU is 5 MB. 

The SRU in elephant traffic is set  to 5 MB. As shown in 
Fig. 7 and Fig. 8, no matter what number of server, the 
completion time of DCVegas is shorter than NewReno and 
IA-TCP. Especially, when the server number is 8, the 
transmission time of DCVegas is shorter than that of  IA-
TCP and NewReno about 59%. Because the amount of 
synchronous transmission data is very large, NewReno will 
has periodic packet loss, resulting in a long completion time. 
IA-TCP waits for a random time before starts transmission 
and does not make good use of switch buffer, caused the 
transmission completion time longer than DCVegas. 

In short, the performance of NewReno relies the 
buffering ability of switch. When the buffer size is not large 
enough, the packets prone to be dropped and thus the 
performance suffered. Although IA-TCP can effectively 
avoid packet loss, but it needs to know the number of 
concurrent servers, bandwidth of the bottleneck link, and the 
minimum RTT. Those are not easy information for a 
transport layer protocol. Furthermore, an IA-TCP 
connection would wait for a random time before it starts 
transmission. The waiting intends to alleviate bursty effect 
when a lots of connections start to transmit at the same time 
and thus prevents the packet loss occurs. However, the 
waiting is unnecessary when the number of servers and SRU 
are small. 

V. Conclusions 
In this paper, we propose a new TCP variant based on 

the TCP Vegas - called Data Center Vegas (DCVegas). 
DCVegas features a positive window size increasing scheme 
in slow start phase and a sensitive congestion control 
mechanism in congestion avoidance phase. Therefore, 
DCVegas presents a good performance in a variety of 
conditions. Compared to IA-TCP, DCVegas doesn't need 
cross layer information such as the number of servers, the 
bandwidth of the bottleneck link. This reduces the 
complexity of deployment. Overall, the proposed DCVegas 
can effectively avoid the occurrence of TCP Incast and easy 
to be adopted in data center networks. 
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