

1

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

A Delay-Based TCP for Data Center Networks
Yi-Cheng Chan, Wan-Chen Chang

Abstract—TCP Incast is a pathological behavior of TCP

that results in gross under-utilization of link capacity in certain

many-to-one communication patterns. The many-to-one

communication is the main transmission mode in data center

networks. In this paper, we modify the most famous delay-

based TCP, Vegas, and propose a new congestion control

mechanism for data center networks. The proposed DCVegas

can quickly and appropriately adjust its congestion window

size without the special help of the intermediate nodes.

Through extensive NS-2 simulations, the results of DCVegas

are compared with that of IA-TCP and TCP NewReno.

DCVegas outperforms IA-TCP and NewReno in a variety of

conditions. The proposed DCVegas maintains the end-to-end

approach and effectively avoids the occurrence of TCP Incast

in data center networks.

Keywords—data center networks, TCP, Incast

I. Introduction
Nowadays, data center networks have become a key

resource to provide online services such as web search,
social networking, cloud computing, etc. Many online
service providers such as Google, Amazon, Microsoft,
Facebook and IBM have vastly invested in building data
center networks to support large scale computing power and
storage. To ensure the integrity of data transmission, the
majority of data centers use TCP as its default transport
protocol [6][11]. However, the high-bandwidth and low-
latency environment of data centers is different from the
TCP original assumptions [11]. When the servers send the
requested to the client, there will be a lot of data into the
switch at the same time. The switch may suffer buffer
overflow and Incast congestion. It will cause lots of packet
loss and network collapse, known as TCP Incast.

Delay-based TCP comes with a more sensitive
congestion control feature is confirmed performs better than
loss-based TCP in homogeneous environments [9]. Due to a
data center network can be a homogeneous environment, it’s
no need to consider the competition problem between
different variants of TCP. Therefore, we modify the most
famous delay-based TCP, Vegas, and propose a new
congestion control mechanism for data center networks. The
proposed Data Center Vegas (DCVegas) can quickly and
appropriately adjust its congestion window size without the
special help of the intermediate nodes.

Yi-Cheng Chan, Wan-Chen Chang

National Changhua University of Education
Taiwan

DCVegas maintains the end-to-end approach and
features two improvements: (1) A more positive window
adjustment in the slow start phase. DCVegas estimates the
amount of extra data that kept in the bottleneck and
increases its congestion window size aggressively if the
amount of extra data is less than the predefined parameter γ.
Thus DCVegas can effectively utilize the bandwidth at the
beginning of transmission without packet loss. (2) An
improved congestion avoidance mechanism. Traditional
TCP adjusts its congestion window linearly in the
congestion avoidance phase. It is too sluggish for data center
networks. DCVegas employs the history and the estimated
amount of extra data to guide the window size changes. The
new mechanism can more quickly and appropriately adjust
its window size, and utilize the bandwidth.

Through the extensive NS-2 simulations, the results of
DCVegas are compared with that of IA-TCP and TCP
NewReno. DCVegas outperforms IA-TCP and NewReno in
a variety of conditions. The rest of this paper is organized as
follows. The related work is described in Section 2. Section
3 presents the proposed mechanism, DCVegas. Section 4
discusses the results of NS-2 simulations. Finally, the
conclusions are presented in Section 5.

II. Related Work
In this section we first describe the TCP Incast problem

and then depict the TCP Vegas, the base of the proposed

DCVegas and finally describe the IA-TCP that is a famous

TCP variant designed for data center networks.

A. TCP Incast
The TCP Incast problem was first reported by Nagle et

al. [1] in the design of scalable storage architecture. Data
center networks provides distributed service to satisfy the
request of different users. When the client sends the
information requested to the servers, the data will be
transmitted to the client through the bottlenecks between
switch and client, and then formation of many-to-one
transmission mode. With the increasing synchronous
transmission of the servers, there will be a lot of data into
the switch at the same time, and also competing for the same
output port. Therefore, the switch will result in a buffer
overflow caused lot of packet loss. In the meantime, if the
Retransmission Timeout (RTO) setting is not suitable
[7][10].(The default RTOmin of traditional TCP is set to 200
ms, while the RTT can be less than 250 μs in data center
networks [2].) It will cause network collapse and bandwidth
utilization decrease, known as TCP Incast.

B. TCP Vegas
Vegas adopts a more sophisticated bandwidth estimation

scheme that tries to avoid rather than to react to congestion
[3]. It uses the measured RTT to accurately calculate the
amount of data packets that a source can send. Vegas
calculates the extra data (Δ) and doubles its congestion
window every other RTT. Vegas estimates a proper amount

2

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

of extra data to be kept in the network pipe and controls the
congestion window size accordingly. It records the RTT and
sets BaseRTT to the minimum of ever measured round-trip
times. The amount of extra data (Δ) is estimated as follows:

Δ = (Expected − Actual) × BaseRTT, (1)

where Expected throughput is the CWND divided by
BaseRTT, and Actual throughput represents the CWND
divided by the newly measured smoothed-RTT. When the
amount of Δ is greater than γ, Vegas leaves the slow-start
phase. The CWND is kept constant when the Δ is between
two thresholds α and β. If Δ is greater than β, the CWND
will be reduced. On the other hand, if the Δ is smaller than α,
the connection may be under utilizing the available
bandwidth. Hence, the CWND will be increased. The rule
for congestion window adjustment can be expressed as
follows:

,

.,

,1

,1















otherwiseCWND

ifCWND

ifCWND

CWND 



 (2)

C. IA-TCP
Hwang et al. proposed a rate based congestion control

algorithm, called IA-TCP [2]. This algorithm controls the
total number of packets injected into the network pipe to
meet the bandwidth delay-product (BDP). IA-TCP regulates
the total number of outstanding data packets so that it does
not exceed the path BDP. The aggregator controls the
window size of the workers and then adds Δ(s) to the RTTmin
for fine-grained rate control. The data packet rate is set to
equation (3):

capacityLink
MSSWi

IARate

n

i 




 

min

1

RTT

 (3)

where MSS denotes the maximum segment size, n is the
total number of concurrent connections, and wi is the
window size of the ith connection. IA-TCP control the
window sizes of all connections to be equal to W for
simplicity and fairness between the connections. Then they
have the window size W from equation (4) as follows:

n

RTTMSScapacityLink
W min/ 



 (4)

Figure 1. Example of random delay for the first ACK period

Even though the total number of outstanding packets
may be maintained, if all the workers send their data in a
synchronized fashion, which occurs more often than not,

then it may still cause network overflow. Fig. 1 shows an
example when a random delay is given for each connection
for the first ACK, so that all outstanding packets are timely
distributed over the path with n/(RTTmin+Δ) of mean
interval from the next period.

III. Proposed Method
A data center network can be a homogeneous network

environment in which every node adopts the same TCP
version. This is a good opportunity to perform the delay-
based TCP that is considered outperforms loss-based TCP in
such environments. Therefore, we modify the most famous
delay-based TCP, Vegas, and propose a new congestion
control mechanism for data center networks, named Data
Center Vegas (DCVegas). DCVegas is a sender-sided
modification and hence it can be implemented solely at the
end host. DCVegas enhances the slow start and congestion
avoidance phase of Vegas. The details are described as
follows.

A. Slow Start Phase
In slow start phase, TCP Vegas doubles the size of its

congestion window only every other RTT. Such increasing
speed is too conservative for data center networks. To be
able to quickly make good use of link bandwidth in the
connection initiation phase. The congestion window of
DCVegas is adjusted every RTT instead of every other RTT.
Furthermore, DCVegas increases its window size by 1.5
segment when it receives an ACK, as shown in equation (5):

CWND = CWND + 1.5 (5)

To prevent packet loss in the slow start phase, we adjust
γ to 0.5, a more sensitive parameter. When the amount of
extra data (Δ) is greater than γ, DCVegas leaves its slow
start phase and enters the congestion avoidance phase.
Especially, Vegas reduces the congestion window size by
1/8 when it leaves the slow start phase. We believe such
reduction is unnecessary to DCVegas. Because the γ is
setting to a small value. Therefore, DCVegas keeps the same
window size when it enters the congestion avoidance phase.

B. Congestion Avoidance Phase
In data center networks, servers may be configured a big

server request unit (SRU). In such situation, a TCP
connection may enter the congestion avoidance phase to
complete the transmission. Therefore, the congestion
avoidance mechanism also needs to be improved.

TCP Vegas updates its congestion window linearly in the
congestion avoidance phase, it is too sluggish for a high
BDP network [8]. If Δ < α, the connection may be under
utilizing the available bandwidth. For the increment of
congestion window, DCVegas has the history to guide the
window size changes. DCVegas records the number of
consecutive increments due to Δ < α and refers to this value
as succ. Whenever the CWND should be increased due to Δ
< α, it is updated as follows:

CWND = CWND + (β - ∆) × succ (6)

When first estimation Δ < α, continuous occurrence Δ <
α (succ) will be denoted by 1. The congestion window size
will be increased by (β - Δ). The next consecutive estimation

3

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

of Δ < α, that means network are still have idle bandwidth
can be used. The congestion window size will be increased
by (β - Δ) × 2, and so on. The succ will be reset whenever Δ
≥ α. The idea is that if the increment was successful, it might
be the case that there is enough bandwidth and it is
worthwhile to move to a more aggressive increasing strategy.
In addition, to ensure that the CWND will not be increased
too fast, DCVegas can at most double the size of CWND for
every estimation of Δ < α.

In aspect of reducing CWND, when measured Δ > β, we
consider that network may beginning congestion. DCVegas
will make decrease CWND more serious. DCVegas uses the
difference of Δ and (α + β) / 2 as the guide for every
estimation of Δ > β. The adjustment rule as shown in
equation (7):

CWND = CWND - (∆- ((α + β) / 2)) (7)

To reduce the bursty effect of increment, the incr is
served as the increment amount of congestion window after
each Acknowledgement Packet is received by a DCVegas
source. If Δ between β and (α + β) / 2, CWND will decrease
1, the incr and succ will be reset to zero. When Δ between α
and (α + β) / 2, the incr will be set to (1 / CWND), and succ
will be reset. When Δ = (α + β) / 2, that means network
currently used in good, we don’t need to adjust CWND. Due
to data center networks have the characteristic of high-
bandwidth and low-latency. The congestion index α and β of
DCVegas is set to 1 and 2, respectively.

IV. Performance Evaluation
Figure 2 shows the simulation network topology. Link

bandwidth is set to 1 Gbps or 10 Gbps. Each link delay is 25
μs. Depending on different simulation scenarios, the
bottleneck buffer can be 256 K, 1 M or 4 M bytes. Packet
size is fixed at 1000 bytes. The RTOmin of all TCP variants
are set to 20 ms.

Figure 2. Data center networks topology

TABLE I. DATA CENTER TRAFFIC: APPLICATIONS AND

PERFORMANCE REQUIREMENTS

Traffic Type Example Requirements

Mice traffic
(< 100 KB)

Google Search, Facebook
Short response
times

Cat traffic

(100 KB-5 MB)

Picasa, YouTube,

Facebook photos
Low latency

Elephant traffic

(> 5 MB)

Software updates, Video

On-demand

High

throughput

From the previous literature [4][5], traffic in data center
networks is classified mainly into three types: (i) Mice
traffic - the queries form the mice traffic. Majority of the
traffic in a data center network is query traffic and its data
transmission volume is usually less. (ii) Cat traffic – the
control state and co-ordination messages form the cat traffic
and (iii) Elephant traffic - the large updates form the
elephant traffic. The different traffic types in data center
networks, their applications and performance requirements
are summarized in Table I.

According to these three transmission modes, we present
the simulation results of DCVegas and compare that with
the results of IA-TCP and TCP NewReno by NS-2.

A. Cat Traffic
In data center network, the most common scenarios is set

SRU to 256 KB [2]. Fig. 3 and Fig. 4 show the goodput of
NewReno, IA-TCP and DCVegas.

(a) NewReno

(b) IA-TCP

 (c) DCVegas

Figure 3. The goodput of three TCP variants. The link bandwidth is 1

Gbps, bottleneck buffer size is 256 K/1 M/4 M bytes and SRU is 256 KB.

As shown in Fig. 3, the goodput of DCVegas and IA-
TCP is better than that of NewReno. Because NewReno may
introduce packet loss by itself, so it cannot fully utilize the
network bandwidth. With the knowledge of the number of
concurrent server, IA-TCP computes the product of
bottleneck bandwidth and the minimum RTT of connections.
It equally distributes the maximum window size to each
server. The mechanism effectively avoids the packet loss.
However, IA-TCP does not consider the buffer of
intermediate node, which also is a considerable network
resource. When the number of servers is 1, 2 and 4, the
allocated CWND of IA-TCP would be too conservative. In
such cases DCVegas creates 2.9%, 4.4% and 0.7%

4

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

performance improvement as compared with IA-TCP,
respectively. The mechanism of DCVegas can quickly and
appropriately adjust its window size, and thus utilize the
bandwidth without packet loss. The performance of
DCVegas is the best.

In Fig.4, when the number of servers is 128, buffer size
is 1 M bytes, NewReno injects serious packet loss and
results in performance collapse. In such situation, both
DCVegas and IA-TCP create 22% performance
improvement as compared with NewReno. IA-TCP allocates
maximum window size for each server in advance, so it will
not incur packet loss. Due to the sensitive congestion control
and the bursty nature of TCP, DCVegas enters the
congestion avoidance phase too early and postpones the
increasing of window size. Thus, when the number of
servers is 4 and 8, the goodput of IA-TCP is greater than
DCVegas. However, when the number of server is 16,
DCVegas outperforms IA-TCP about 2.7%. In general, both
DCVegas and IA-TCP have a good performance in these
simulation scenarios.

(a) NewReno

(b) IA-TCP

(c) DCVegas

Figure 4. The goodput of three TCP variants. The link bandwidth is 10

Gbps, bottleneck buffer size is 1 M/4 M bytes and SRU is 256 KB.

B. Mice Traffic

 (a) number of servers = 8 (b) number of servers = 64

Figure 5. The transmission completion time. The link bandwidth is 1

Gbps and SRU is 100 KB.

(a) number of servers = 8 (b) number of servers = 64

Figure 6. The transmission completion time. The link bandwidth is 10

Gbps and SRU is 100 KB.

In mice traffic mode, the SRU of each server is set to
100 KB. We compares the transmission completion time of
TCP NewReno, IA-TCP and DCVegas. When the SRU is
small, all the packet transmission is likely complete in slow
start phase. Since DCVegas has a more positive window
adjustment scheme in the slow start phase, so the
transmission completion time of DCVegas is shorter than
that of NewReno and IA-TCP, as shown in Fig. 5 and Fig. 6.

C. Elephant Traffic

(a) number of servers = 8 (b) number of servers = 64

Figure 7. The transmission completion time. The link bandwidth is 1

Gbps and SRU is 5 MB.

5

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 3 [ISSN 2250-3757]

Publication Date : 30 December, 2016

(a) number of servers = 8 (b) number of servers = 64

Figure 8. The transmission completion time. The link bandwidth is 10
Gbps and SRU is 5 MB.

The SRU in elephant traffic is set to 5 MB. As shown in
Fig. 7 and Fig. 8, no matter what number of server, the
completion time of DCVegas is shorter than NewReno and
IA-TCP. Especially, when the server number is 8, the
transmission time of DCVegas is shorter than that of IA-
TCP and NewReno about 59%. Because the amount of
synchronous transmission data is very large, NewReno will
has periodic packet loss, resulting in a long completion time.
IA-TCP waits for a random time before starts transmission
and does not make good use of switch buffer, caused the
transmission completion time longer than DCVegas.

In short, the performance of NewReno relies the
buffering ability of switch. When the buffer size is not large
enough, the packets prone to be dropped and thus the
performance suffered. Although IA-TCP can effectively
avoid packet loss, but it needs to know the number of
concurrent servers, bandwidth of the bottleneck link, and the
minimum RTT. Those are not easy information for a
transport layer protocol. Furthermore, an IA-TCP
connection would wait for a random time before it starts
transmission. The waiting intends to alleviate bursty effect
when a lots of connections start to transmit at the same time
and thus prevents the packet loss occurs. However, the
waiting is unnecessary when the number of servers and SRU
are small.

V. Conclusions
In this paper, we propose a new TCP variant based on

the TCP Vegas - called Data Center Vegas (DCVegas).
DCVegas features a positive window size increasing scheme
in slow start phase and a sensitive congestion control
mechanism in congestion avoidance phase. Therefore,
DCVegas presents a good performance in a variety of
conditions. Compared to IA-TCP, DCVegas doesn't need
cross layer information such as the number of servers, the
bandwidth of the bottleneck link. This reduces the
complexity of deployment. Overall, the proposed DCVegas
can effectively avoid the occurrence of TCP Incast and easy
to be adopted in data center networks.

References

[1] D. Nagle, D. Serenyi, A. Matthews, “The Panasas activescale storage

cluster: Delivering scalable high bandwidth storage,” in Proceedings
of the 2004 ACM/IEEE conference on Supercomputing, pp. 53,
November 2004.

[2] J. Hwang, J. Yoo, N. Choi, “IA-TCP: A Rate Based Incast-Avoidance
Algorithm for TCP in Data Center Networks,” in Proceedings of the

IEEE International Conference on Communications (ICC), pp. 1292-
1296, June 2012.

[3] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global Internet,” IEEE J. Select. Areas
Communications, vol. 13, pp. 1465-1480, Oct. 1995.

[4] M. Alizadehz, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, M. Sridharan, “Data Center TCP (DCTCP),”
SIGCOMM’10, pp. 63-74, August 30-September 3, 2010.

[5] R.P. Tahiliani, M.P. Tahiliani, and K. Chandrasekaran, “TCP variants
for Data Center Networks: A comparative study” in proceedings of
the Cloud and Services Computing (ISCOS), pp. 57-62, December
2012.

[6] R.P. Tahiliani, M.P. Tahiliani and K. C. Sekaran “TCP Congestion
Control in Data Center Networks,” Handbook on Data Centers, pp.
485-505, March 2015.

[7] U.U. Hafeez, A. Kashaf, Q. Bajwa, A. Mushtaq , “Mitigating
Datacenter Incast Congestion Using RTO Randomization” IEEE
Global Communications Conference (GLOBECOM), pp.1-6,
December 2015.

[8] Y. Chan, C. Lin, and C. Ho, “Quick Vegas: Improving Performance
of TCP Vegas for High Bandwidth-Delay Product Networks,” IEICE
Transactions on Communications, Vol. E91-B, No. 4, pp. 987-997,
April 2008.

[9] Y. Chan, C. Lin, C. Chan, C. Ho, “CODE TCP: A competitive delay-
based TCP,” Computer Communications, vol. 33, no. 9, pp. 1013–
1029, Jun. 2010.

[10] Y. Chen, R. Griffit, D. Zats, R. H. Katz “Understanding TCP Incast
and Its Implications for Big Data Workloads,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2012-40,
pp 1-10, April 2012.

[11] Y. Chen, R. Griffith, J. Liu, A. Joseph, R. H. Katz, “Understanding
TCP Incast Throughput Collapse in Datacenter Networks,” Workshop
on Research in Enterprise Networks (WREN’09), pp.73-82, August
2009.

