International Journal of Advancements in Mechanical and Aeronautical Engineering

Volume 3 : Issue 3 [ISSN 2372-4153]

Publication Date : 30 December, 2016

Reliability Design of Residential-Sized Refrigerators Subjected to Repetitive Random Vibration Loads During Transportation

[Seong-woo Woo^{a,*}]

Abstract— New designed residential-sized refrigerators subjected to repetitive random vibrations can be damaged during transportation. The damage consists of fracturing of the tubes between the compressor and condenser and tearing of the compressor rubber mounts. As the reliability quantitative (RQ) test specifications, parametric accelerated life testing (ALT) through sample inspections and corrective action plans was used to identify the key control parameters for the connecting tubes and compressor rubber mounts. The shape of failures in refrigerators found experimentally was identical to those of the failed samples in field. The connecting tube fractures resulted from the problematic shape of the compressor rubber mount. To correct these problems, the mounts and connecting tubes were redesigned. The refrigerators with targeted B1 life were expected to survive without failure during rail transport. Parametric ALTs were effective in identifying the missing design parameters of mechanical systems such as refrigerators during the design phase. The reliability design method presented in this paper should be applicable to other mechanical systems during transportation.

Keywords—Acceleration factor, Random vibration, Transportation, sample-size equation, parametric ALT, Missing design parameters.

I. Introduction

Reliability refers to the ability of system or component to perform a required function under stated environmental and operational conditions for a specified period of time [1]. Traditionally, the product reliability can be illustrated by a bathtub curve that has three regions: a decreasing rate of failure, a constant rate of failure, and an increasing rate of failure, as shown in Figure 1. As the reliability of a product (or part) improves, failure of the part becomes less frequent in the field. The bathtub curve may change into a straight line with the slope angle β . In a straight line there are two variables to be measured as product life LB and failure rate λ , as shown in Eq. (1):

$$\mathbf{R}(\mathbf{L}_{\mathbf{B}}) = 1 - F(\mathbf{L}_{\mathbf{B}}) = \mathbf{e}^{-\lambda \mathbf{L}_{\mathbf{B}}} \cong \mathbf{1} - \lambda \mathbf{L}_{\mathbf{B}\mathbf{X}}$$
(1)

^a Director and Chief Researcher, Reliability Association of Korea, 146-102 Sunyoo-ro, Yeongdeungpo-gu, Seoul 150-103, Korea

* Corresponding author. Tel.: +82-42-936-1026; Fax: +82-42-936-2052;

Figure 1. The bathtub curve and straight line with slope β

In a practical sense, this proportionality is applicable below about 20 percent of cumulative failure rate [2]. Improving the design of a refrigeration system to increase its reliability can be achieved by quantifying the targeted product lifetime LB and failure rate \Box by finding the appropriate control parameters affecting reliability and then modifying the design with the results from parametric accelerated life testing (ALT).

Figure 2. Vapor-compression refrigeration cycle

As seen in Figure 2, a vapor-compression refrigeration cycle consists of a compressor, a condenser, a capillary tube, and an evaporator. The compressor receives refrigerant from the low-side (evaporator) and then compresses and transfers the refrigerant to the high-side (condenser) of the system. The capillary tube controls the flow in a refrigeration system and drops the high pressure of the refrigerant in the condenser to the low pressure in the evaporator.

Figure 3. Robust design schematic of refrigeration system

These components can be put together as a subassembly and have an input and output for a vapor compressor cycle that is designed to produce cold air. For robust design techniques, a robust design schematic of refrigeration system employs two arrays: one for the control array (design) and the other for the noise array (loads). As minimizing a signal (output)to-noise (load) ratio over the control factors, the control parameters in an optimal design can be determined (see Figure 3).

Figure 5. Mechanical compartment: (1) compressor, (2) rubber, (3) connecting tubes, and (4) fan and condenser

Robust design techniques, including statistical design of experiment (SDE) and the Taguchi methods [3], have been developed to help improve the reliability of product designs. Taguchi's robust design method uses parameter design to place the design in a position where random "noise" does not cause failure and is used to determine the proper design parameters and their levels [4-8].

The basic idea of parameter design is to identify, through exploiting interactions between control factors and noise factors, appropriate settings for the control factors that make the system's performance robust in relation to changes in the noise factors. Thus, the control factors are assigned to an inner array in an orthogonal array, and the noise factors are assigned to an outer array.

However, a large number of experimental trials using the Taguchi product array may be required because the noise array is repeated for every row in the control array. For a simple mechanical structure, a lot of design parameters

Publication Date : 30 December, 2016

should be considered in the Taguchi method's robust design process. Missing or improper minor design parameters may result in product recalls and loss of brand name value.

In this study we present a new parametric accelerated life testing (ALT) method that can improve the reliability of residential-sized refrigerators subjected to repetitive random vibration loads during transportation. This testing method will be helpful to make better the reliability of other products with improper design parameters that can result in recalls and loss of brand name value. The method will uses accelerated life testing with sample size equations, as a novel means of determining proper design parameters.

п. Load Analysis and Bx Life

According to the investigation of company, the transportation distance of first failure was roughly 2500 km in 2 days. In Chicago the 27% among total transported product were approximately failed. After the refrigerator moved 7200km from Los Angles to Boston, the 67% of product were failed (Figure 6(a)).

In the field, the connecting tubes and the compressor rubber mounts in the mechanical compartments of side-by-side refrigerators were fracturing and tearing under unknown field conditions (see Figure 6(b)). Because the tubes were fracturing, refrigerant was leaking out of the tubes, which resulted in loss of refrigerating capacity. Field data indicated that the damaged products might have had structural design flaws that prevented protection from repetitive random vibration loads during transportation. These design flaws combined with the repetitive random vibration loads during shipping could cause a crack to occur, and thus result in failure.

(a) Failed locations in the field

(b) Failed connecting tubes in the mechanical compartment

Figure 6. Fracture of the refrigerator connecting tubes in the field.

Publication Date : 30 December, 2016

During transportation, the mechanical compartment (and the components in it) in the rear of the refrigerator is subjected to repetitive random vibration loads. To isolate and protect the components during transportation, refrigerator a compressor rubber mount is usually installed. If the system for vibration isolation is improperly designed, refrigerator subjected to the random vibration will be fractured. Refrigerators might loss the function that they supply cold air to the freezer and refrigerator compartments (see Figure 5 and 6).

Figure 7. Refrigerators subjected to base random vibrations.

A random vibration in refrigeration system is motion which is non-deterministic. Refrigerator is subjected to ride on a rough road or rail, wave height on the water. A measurement of the acceleration spectral density is the usual way to specify random vibration. As seen in Figure 7, a refrigerator subjected to base is random vibrations and their power spectral density.

Figure 8. Two-Degree-of-Freedom Vehicle Model subjected to base random vibrations

Figure 9. A simplified One-Degree-of-Freedom Vehicle Model

A refrigerator subjected to random vibration during transportation can be modeled using the two-degree-of-freedom vehicle model (see Figure 8). As seen in Figure 9, the equivalent model of refrigerator is simplified as:

$$m_e \ddot{x} + c_e \dot{x} + k_e x = k_e y + c_e \dot{y}$$
⁽²⁾

The force transmitted to the refrigerator can be expressed as force transmissibility Q [9]. That is,

$$Q = \frac{F_T}{kY} = r^2 \left[\frac{1 + (2\zeta r)^2}{(1 - r^2)^2 + (2\zeta r)^2} \right]$$
(3)

Because the stress of the refrigerator due to random vibrations during transportation depends on the transmitted vibration load (FT) from the basis, the life-stress model (LS model) [10] can be modified as:

$$TF = A(S)^{-n} = A(F)^{-\lambda}$$
⁽⁴⁾

The acceleration factor (AF) can be expressed as the product of the amplitude ratio of acceleration R and force transmissibility Q. That is,

$$AF = \left(\frac{S_1}{S_0}\right)^n = \left(\frac{F_1}{F_0}\right)^\lambda = \left(\frac{a_1}{a_0}\frac{F_T}{kY}\right)^\lambda = \left(R \times Q\right)^\lambda$$
(5)

If the acceleration factors in equation (5) are added into the planned testing time, sample size equation (6) will be modified as [21]:

$$n \ge (r+1) \cdot \frac{1}{x} \cdot \left(\frac{L_{BX}^*}{AF \cdot h_a}\right)^{\beta} + r \tag{6}$$

The reliability of three sample refrigerator was targeted to be 10 years over B_1 . Based on the customer usage conditions, the operating conditions and cycles of the product (or parts) could be calculated for 10 years. Under the worst case, the objective number of cycles and the number of required test cycles can be obtained from Equation (6). ALT can then be conducted on the basis of load analysis. In parameter ALT, the missing parameters in the design phase can be identified.

III. Laboratory Experiments

The operating conditions for three sample refrigerator were approximately $0-43 \square C$ with a relative humidity ranging from 0% to 95%, and 0.2–0.24 g's of acceleration. Based on the field data, the rail transportation was expected to move a refrigerator 2,500 km in 2 days. For a total elapsed transportation time of 7 days, the refrigerator moved 7,200 km from Los Angeles to Boston.

(a) Horizontal vibration (Left ↔ Right)
 (b) Vertical
 vibration (Up ↔ Down)

Figure 10. Vibration test equipment for the accelerated life tests

Table 1. ALT Conditions for accelerated testing of the
refrigerator

System Conditions	Worst Case	ALT	AF
Transmissibility, $Q (r = 1.0, \zeta = 0.1)$	-	5.1 (From eq. 3)	5.1 ①
Amplitude ratio of acceleration, $R(a_1/a_0)$	0.24 g	1 g	4.17 ©
Total $AF (= (\textcircled{0} \times \textcircled{2})^2)$			452

When the refrigerator was subjected to an acceleration of 1 g on a shaker table, the natural frequencies of horizontal vibration (left \leftrightarrow right) and vertical vibration (up \leftrightarrow down) were 5 Hz and 9 Hz in the package test (Figure 10). For natural frequency (r = 1.0) and small damping ratio ($\zeta = 0.1$), the force transmissibility had a value of approximately 5.1 from equation (3). The amplitude ratio of acceleration was 4.17 (Table 1). Using a cumulative damage exponent of 2.0, the acceleration factor in equation (5) was found to be approximately 452.0. The shape parameter in the Weibull chart was 6.41, and the required target x for the B1 life was 0.01.

The test time and the number of samples used in the ALT calculated from equation (6) were approximately 40 min and 3 units without failure, respectively. Parametric ALT was designed to ensure a B1 of 10 years life with about a 60% level of confidence that the refrigerator would fail less than once during 40 min that makes up the reliability quantitative (RQ) test specifications.

(a) Field

(b) 1st ALT Results

Figure 11. Failure of refrigerator tubes in the field and 1st ALT result.

All refrigerators in the parametric ALTs were fractured from horizontal vibration. Figures 11 (a) and (b) show the failed products from the field and the fractured samples from the ALT, respectively. The photos show that the shapes and locations of the failures in the ALT were similar to those seen in the field.

Figure 12. Field data and results of parametric ALT on a Weibull chart.

A graphical analysis of the ALT results and field data on a Weibull plot were shown in Figure 12. Parametric ALT was valid in pinpointing the design weaknesses that were responsible for the failures in the field. From the Weibull plot, the shape parameter was confirmed to be 6.13.

The design flaws of the refrigerator that experienced fractured tubes between the compressor and condenser areas could be corrected by modifying the shape of the compressor rubber mount and the connecting tube design. The design improvements corresponded to the missing key control parameters (KCPs), as listed in Table 2.

Table 2. Confirmed key parameters based on the parameter ALTs

Failure Mechanism	Parameters			Unit
Fracturing	KNP	N1	Random vibration force	N
	КСР С1 С2	C1	Shape of the compressor rubber	-
		C2	Connecting tube design	-

Publication Date : 30 December, 2016

Figure 13. Shape of compressor rubber (polymer) mount

Figure 14. Shape of the connecting tube design

Figure 13 and 14 shows the redesigned refrigerator that has 1) a redesigned compressor rubber mount shape (C1); and 2) a redesigned connecting tube (C2). With these modified parameters, second ALTs were carried out. The design targets of the newly designed samples were more than the target life of a B1 of 10 years. The confirmed values of AF and β in Table 1 and Figure 12 were 452.0 and 6.41, respectively. The recalculated test time and sample size in equation (6) were 40 min and 3 EA, respectively. In the second ALT, the refrigerators were not fractured.

Figure 15. Field data and results of accelerated life test on Weibull chart.

Figure 15 and Table 3 show the graphical results of an ALT plotted in a Weibull chart and a summary of the results of

the ALTs, respectively. Over the course of the two ALTs, refrigerators with the targeted B1 life were expected to survive without failure during rail transport.

Table 3 Results of ALTs

	1 st ALT	2 nd ALT	
	Initial Design	Final Design	
In 40 min, fracture of the connecting tube in refrigerator is less than 1	20 min: 1/3 fracture 40 min: 1/3 fracture	40 min: 3/3 OK 60 min: 3/3 OK	
Machine room in refrigerator			
Material and specification	C1: Shape of the compressor rubber C2: Connecting tube design		

IV. Laboratory Experiments

Robust methodologies were used to improve the reliability of residential-sized refrigerators subjected to repetitive random vibration loads during transportation. These methodologies included setting an overall parametric ALT plan for the product, identifying the failure modes and mechanisms of fractured refrigerators in the field, conducting a series of ALTs, and redesigning the refrigerators based on the ALTs. Based on the products that failed both in the field and in the ALTs, the primary failure of the refrigerators occurred due to fracturing of the tubes between the compressor and condenser.

The missing design parameters in the design phase of the refrigerator were the shape of compressor rubber mount and the connecting tube. The corrective action plans included revising the shape of the compressor rubber mount and the connecting tube. Based on the second set of ALTs, cracking occurred in residential-sized refrigerators subjected to repetitive random vibration loads during transportation. After a sequence of ALTs, the proper values for the design parameters were determined to meet the life cycle requirements—B1 of 10 years, respectively. Inspection of the failed product, load analysis, and two rounds of ALTs indicated that the newly designed residential refrigerator

Publication Date : 30 December, 2016

was greatly improved using the new robust design methodologies. Case studies on the design flaws also were suggested in references 12 through 22.

References

- IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990. Standards Coordinating Committee of the Computer Society of IEEE: New York, Sep. 1990.
- [2] Kreyszig E. Advanced Engineering Mathematics. 9th ed. John Wiley and Son: NJ, 2006: 683.
- [3] Taguchi, G., 1978, Off-line and on-line quality control systems. In: Proceedings of the International Conference on Quality Control, Tokyo, Japan
- [4] Taguchi, G., Shih-Chung. T., 1992, Introduction to quality engineering: bringing quality engineering upstream. New York: American Society of Mechanical Engineering.
- [5] Ashley S., Applying Taguchi's quality engineering to technology development. Mech Eng 1992.
- [6] Wilkins, J., 2000, Putting Taguchi Methods to Work to Solve Design Flaws, Quality Progress, 33(5), 55-59.
- [7] Phadke, M., 1989, Quality engineering using robust design. Englewood Cliffs (NJ): Prentice Hall.
- [8] Byrne, D., Taguchi, S., 1987, The Taguchi approach to parameter design. Quality Progress, 20 (12), 19–26.
- [9] [9] Rao, S., Mechanical Vibrations, 4th ed, New York: Prentice Hall, 2003.
- [10] [McPherson, J., 1989, Accelerated Testing, Packaging, Electronic Materials Handbook, ASM International 1, 887-894.
- [11] [Ryu, D., Chang, S., 2005, Novel Concept for Reliability Technology, Microelectronics Reliability, 45 (3), 611-622.
- [12] Woo, S., Pecht, M., 2008, Failure Analysis and Redesign of a Helix Upper Dispenser, Engineering Failure Analysis, 15 (4), 642–653.
- [13] Woo, S., O'Neal, D., Pecht, M., 2009, Improving the Reliability of a Water Dispenser Lever in a Refrigerator Subjected to Repetitive Stresses, Engineering Failure Analysis, 16 (5), 1597–1606.
- [14] Woo, S., O'Neal, D., Pecht, M., 2009, Design of a Hinge Kit System in a Kimchi Refrigerator Receiving Repetitive Stresses, Engineering Failure Analysis, 16 (5), 1655–1665.
- [15] Woo, S., Ryu, D., Pecht, M., 2009, Design Evaluation of a French Refrigerator Drawer System Subjected to Repeated Food Storage Loads, Engineering Failure Analysis, 16 (7), 2224–2234.
- [16] Woo, S., O'Neal, D., Pecht, M., 2010, Failure Analysis and Redesign of the Evaporator Tubing in a Kimchi Refrigerator, Engineering Failure Analysis, 2010, 17(2), 369-379.
- [17] Woo, S., O'Neal, D., Pecht, M., 2010, Reliability design of a reciprocating compressor suction reed valve in a common refrigerator subjected to repetitive pressure loads, Engineering Failure Analysis, 2010, 17(4), 979-991.
- [18] Woo, S., Pecht, M., O'Neal, D., 2009, Reliability Design and Case Study of a Refrigerator Compressor Subjected to Repetitive Loads, International Journal of Refrigeration, 32 (3), 478-486
- [19] Woo S, O'Neal D., Pecht M. Reliability design of residential sized refrigerators subjected to repetitive random vibration loads during rail transport, Engineering Failure Analysis 2011, 18(5), 1322–1332.
- [20] Woo S. The reliability design of mechanical system and its Parametric ALT. Handbook of Materials Failure Analysis with Case Studies from the Chemicals, Concrete and Power Industries. Elsevier: Chapter 11, 2015: 259-276.
- [21] Woo S., O'Neal, D., 2015, Reliability Design of Mechanical Systems Subject to Repetitive Stresses, Recent Patents on Mechanical Engineering, 8 (4), 222-234.
- [22] Woo S., O'Neal, D., 2016, Improving the Reliability of a Domestic Refrigerator Compressor Subjected to Repetitive Loading, Engineering, 2016, 8, 99-115.

