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Abstract— In this paper a transfer function of submarine 

and steering gear are defined. Transfer functions have been 

analyzed and mathematical model of the system is presented. 

Optimal controller and its parameters are found using 

simulation of the whole system by Matlab and Simulink. 

Optimal parameters have been confirmed applying Parseval’s 

theorem. Different types of controllers: P, PI and PID are 

analyzed. Responses for the whole system to the unity step 

function are given. To determine the stability of the system, 

analytical and graphical methods were used. A nonlinear 

system was also considered with two nonlinear elements to 

protect a steering gear from the huge signals. Further research 

for improvement of the model, including a certain disturbance 

is suggested. 
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I.  Introduction  
There are not many papers dealing with the submarine 

depth control systems, mainly because most submarines are 

used for navy and military purposes, i.e. classified. For 

analysing submarine motion is necessary to determine 

hydrodynamic forces and moments acting on the submarine 

movement. On the other hand, finding an appropriate 

mathematical model, from the existing literature, to 

describe depth-dynamic model of the submarine is also a 

quite challenging task. Once a suitable transfer function for 

the submarine and its steering gear were found, the 

analytical methods were used for analysing the system, as 

well as for designing suitable (optimal) parameters of the 

controller. Several non-linear characteristics also have to be 

included in the model using Simulink. 

 

II. Mathematical Model 

A. Dynamical Model 
For analysing the submarine motion, it is necessary to 

determine hydrodynamic forces and moments acting on the 

submarine moving. Naturally, it must be done some 

simplifications on the model because the submarine is so 

complex system for control, with six degrees of freedom. 
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Fig.1. shows submarine dynamic reference frame [5] in  the 

earth-fixed, as well as body-fixed reference frame. 

The kinetic equation are defined in terms of the body-fixed 

 velocities: surge (u), sway (v), heave (w). 

 Define:  yaw rate (r), pitch rate (q) and roll rate (p), where: 

  

 r     q     p  

 

and: yaw angle ( ), pitch angle ( ) and roll angle ( ). 

 

 

Fig.1. Submarine dynamical reference frame. 

B. Submarine Transfer Functions 
Based on hydrodynamic coefficients, including forces 

and moments that acting on the submarine body, it is 

possible through the experiment of the model [6], [7] 

obtained an appropriate linearized transfer functions: 

 

      (1) 

 

    
 

          (2) 

       (3) 

 
where:  
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Process of linearisation is assuming that changes of 

attitude, measured in Euler angles for roll, pitch and yaw 

are small, and with ignoring small quantities in the 

equations.  

In this paper we are focused on the transfer function (2),    

which gives a relationship in a frequency (Laplace) domain 

between pitch angle over a stern plane. This transfer 

function is the second order (quadratic lag), with numerical 

estimated parameters [6], [7] and with chosen speed, 

V=[u,v,w]'.  

Dynamics for yaw and pitch depend on speed, whereas 

the roll dynamics are insensitive to speed. As mentioned 

before, our focus is on the pitch dynamics, which depend on 

a lateral speed: v=5m/s, which gives us the transfer function: 
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C. Steering Gear Transfer Function 
Having submarine by itself, it is meaningless. It has to be 

used with a steering gear (as an actuator). To control the 

submarine, it is necessary to have a larger signal than signal 

from the controller, only. The transfer function for the 

steering gear (S.G.) has been found as a first order transfer 

function: 
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III. Analysing System 

A. Closed Loop System 
By combining the submarine and steering gear transfer 

functions and put them into the closed loop, we obtained  

the response, as on Fig.2. 

 

 
         Fig.2. Closed loop response 

From Fig.2., it is evident that system has a very slow 

response (rise time, and especially a settling time), as well as 

too big overshoot. Steady-state error is very big, too. 

Obviously, this response has to be improved by a right 

selection of the controller and its parameters. 

 

Root locus of the combining steering gear and submarine 

is shown on Fig.3. 

 

 
Fig.3. Root Locus 

 

B. Controller-Steering Gear-
Submarine 
The mathematical model of the closed loop system is 

shown on Fig.4. with a PID (Proportional-Integral-
Derivative) controller.  

 

Fig.4. Mathematical model of submarine control system. 

 

IV. Designing Controller 
 

 First step for designing controller is selection of the 

controller type or a controller mode. Then, a fine tuning, as 

well as finding controller's optimal parameters.  

A. Controller Selection (general rules) 
There are some well accepted quidance regarding the 

selection of the controller type to obtain a desired response 

[1], [3], [4]: 

 

 Optain an open loop response and determine what 

needs to be improved (it has been already 

mentioned in the previous sections, regarding 
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overshoot, steady state error, rise and settling 

time). 

 

 Add a proportional control to improve the speed of 

the system response (particularly a rise time). 

 Add a derivative control to improve the overshoot 

and the transient response. 

 Add an integral control to eliminate the steady state 

error. 

 Adjust each of those controller's parameters until 

obtain a desired overral response. 

 And last, but not the least: make a controller as 

simple as possible. 

 

The most likely effect of each of the controller parameters: 

Kp, Ki and Kd (proportional, integral and derivative gain 

constants, respectively), on the closed loop system 

response, can be tabulated, as in the table below: 

 

               Table 1. 

 
 

Note: Those correlations may not be exactly accurate, 

because Kp, Ki and Kd are dependant on each other. In fact, 

changing one of those parameters can change the effect of 

the other two. For that reason, the table should be use as a 

reference or a guidance, only. 

    Referring to the Fig. 4. it can bee seen that PID controller 

has to be involved in the system. PD mainly for  obtaining 

less or no overshoot (if possible), much faster response, as 

well as to eliminate steady state error.  

In many papers [2], dealing with marine vehicle control 

systems, there are recommendations for using PD controller, 

if the steady state error is not a dominant criteria, or if you 

already have one integrator in the system’s transfer function, 

i.e., if the system is “type-1”. However, in our model 

integral component is essential, because the submarine has a 

big steady state error. It can be reduced by bigger P 

component, but not eliminated. On the other hand, an “I” 

controller component will slow down the system dynamics, 

cause more oscillations and even could destabilise the 

system [1]. The right balance between all of those 

characteristics for an optimal control is required.  

B. Initial Controller’s Settings 
 

Having in mind previously mentioned, it is necessary to 

establish initial settings of PID controller, run the system 

with those parameters, and then apply a fine tuning for 

further improvement. 

Starting point for this initial settings could be Ultimate 

Sensitivity tuning method or so called Ziegler-Nichols 

Second tuning method. Applying this, a closed loop tuning 

method is to leave P controller, only (i.e. disable integral 

and derivative gains). 

Then, start up the process with the Kp at “low level” and 

gradually increase gain settings until the system starts to 

oscillate (i.e. having a sustain oscillations). At that point 

record Kp, which is the ultimate gain or critical gain, Gu. 

That critical gain can be calculated and confirmed by using 

a numerical Routh’s stability criteria or with a grapho-

analytical method, i.e. with a root locus (see Fig.3.). 

Based on period of the sustain oscillations, Pu and given 

Gu, determine the controller settings for PID, PI or P 

controller from the table below:  

          

         Table 2. 

 
 

Note: Ziegler-Nichols Second tuning method is based on 

empirical formula and it is not so occurate. That means, 

calculating controller’s parameters does not lead us to an 

optimal system, and rather gives us a range of the 

controller’s parameters for a fine tuning. 

In our example where: Gu=2.4 and Pu=4.5 sec, the ranges 

of the PID parameters are: Kp=1.56, Ki=0.69 and Kd 0.887. 

Those ranges will be used for determining the optimal 

parameters by using Parseval’s theorem. 

 

V. Optimal Control by            
Parseval’s Theorem 

A. Parseval’s Theorem (basic concept) 

     Parseval’s theorem is also known as Rayleigh’s energy 

theorem, “connects” a time domain with a frequency 

domain, in a general form: 
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where: )}({)( teFE    represents the continuous Fourier 

transform of e(t), and f 2 is frequency in radians per 

second. 

The LHS side is energy in time space while the RHS is 

energy in frequency (spectral) space.  

In mathematics, Parseval’s theorem usuall refers to the 

results that the Fourier transform is unitary and that the sum  

(or integral) of the square of the function is equal to the sum  

of the square of its transform. Using Parceval’s theorem it is 

possible to calculate integral from the LHS through the 

frequency spectrum (positive  and negative) in “s” or 

Laplace’s domain, using formulae: 

 



 

40 

 

International Journal of Advancements in Mechanical and Aeronautical Engineering 
Volume 3 : Issue 3       [ISSN 2372-4153] 

                                                                                       Publication Date : 30  December,  2016 
 

                    dssEsEIn 




 )()(
2

1


                                (7) 

           
)(

)(
)(

sb

sa
sE                                               (8) 

 

Combining those two formulae gives: 
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where: “n” is an order of the system, and “a” and “b”  are  

the coefficients of the polynomes in the descending order of 

“s” :          
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Integral (9) , for the fourth order system may be tranformed 

as a “table integral” (I4) in the form: 

 

        (10) 

B. Implementing Parseval”s Theorem 

At present, it is common opinion that minimum of 

propulsion losses caused by submarine’s control should be 

adapted as a criterion of autopilot (controller) efficiency. 

Based on the losses through a deviation (dynamic error) 

from the desired depth, it can be define so called “Cost 

Function-C.F.” 

C.F. = .min)(
2






dtte                      (11) 

     Cost Function can be calculated by using Parseval’s 

theorem, as well as through simulation to confirm the results 

of that integration.  

A global minimum of the integration for defined range of 

controller’s parameter, from the previous section, will lead 

to the optimal submarine depth control system. 

 

C. Calculating Deviation in “s” domain 
The deviation of the submarine from the desired depth 

can be calculated from Fig. 4. in the frequency domain: 

 

 
      (12) 

 

    Taking the whole range of the controller’s parameters 

obtained by Ziegler-Nichols Second tuning method, and 

putting integral gain constant, Ki unchanged, it can be 

calculated Cost Functions (using Java programme language) 

for the whole spectrum of the Kp and Kd, which is tabulated 

in the Table 3. 

 

                Table 3. 

 
 

      The minimum value of the calculated Cost Function by 

using Parseval’s theorem, gives the optimal controller's 

parameters:  

 

Kp=1.56, Ki=0.69 and Kd=0.877. 

 

It can be noticed that those results confirm Ziegler-Nichols 

choice for the optimal parameters. 

However, with a small tuning of those parameters, based on 

Table 1. it is possible to get slightly better response of the 

system by changing Kp=1.3, while two others remain the 

same. 

VI. Simulation by Matlab and 
Simulink 

A. Simulation of the Linear System 
By using Matlab and Simulink, it is possible to confirm 

those optimal parameters in time domain. Of course, at the 

same time, it proves a correctness of the Parseval’s theorem, 

in the case of Cost Function, as an integral of quadratic 

dynamic error. 

Simulation of the whole system: controller-steering gear-

submarine is shown on Fig.5. as well as, with some 

additional blocks, including two nonlinearities, which will 

be discuss later. 
 Scope1 (on Fig.6.1., Fig.6.2. and Fig.6..3., in Appendix) 

shows integral of quadratic dynamic error for two randomly 
selected controller’s parameters (from already defined 
range), and for optimal parameters, respectively. Optimal 
parameters give the smaller value of the integral than 
another two. 

B. Simulation of Nonlinear System 

In the case of a huge “derivative kick”, where Kd is 

relatively big, as well as a dynamic error (especially at t=0), 

it is advisable to implement nonlinear element (saturation 

blocks in Fig.5.). Those blocks have a positive effect on 

stability, if chosen properly. 

The first saturation block is used as a stern plane limiter. 

This helps to limit the movement (position) of stern plane 

and to protect the steering gear from damage. 

The second saturation block acts as a stern plane rate limiter 

and protects the stern plane from the very fast movement. 

Note: to include the stern rate limiter in the system, it is 

necessary to modify steering gear block from Fig.4. 
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Fig.5. Simulation model. 

    

      

       Several different limits (from 0.5-5) have been applied 

in both saturation blocks. Fig.7. (in Appendix) shows a 

slightly bigger integral of quadratic dynamic error if those 

blocks are included in the system, but still better than in the 

cases of randomly selected parameters.  

Anyway, those blocks can be used as a precaution for the 

steering gear.  

If nonlinearities were introduced in the system, then 

Parseval’s theorem cannot be applied, but a simulation, 

only.  

VII. Conclusion 
Mathematical model of the submarine depth control 

system is defined. Different controller’s types have been 
examined, then PID controller selected.Ziegler-Nichols 
tuning method is used to find an initial range of the 
controller’s parameters. Criteria for optimal controller’s 
parameters is defined through the Cost Function. Parseval’s 
theorem for calculating those parameters is used. Some 
small tuning is performed. Matlab and Simulink are used to 
simulate the whole system and to prove a correctness of the 
Parseval’s theorem. Two nonlinearities (stern plane and rate 
stern plane limiters) are introduced. Further research could 
lead to introducing a disturbance to the system (such as a sea 
current) and find how it effects the system’s performance. 
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       Fig.6.1.     Kp=0.1,   Ki=0.69,   Kd=0.1 

 

 

       

      Fig.6.2.       Kp=0.5,   Ki=0.69,   Kd=0.5 
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      Fig.6.3.     Kp=1.3,   Ki=0.69,   Kd=0.877 

 

                        

       

            Fig.7.      With two saturation blocks: 

                            Kp=1.3,  Ki=0.69,   Kd=0.877 
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