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Abstract— Occurrence of embolism from patients who 

suffer from carotid artery stenosis may bring to the onset of 

stroke if it became severe. In clinical practice, Doppler 

ultrasound technique is commonly used to detect the emboli in 

the cerebral circulation. Instead of depending on human 

observer as a gold standard to detect the emboli, this study 

proposes an automated embolic identification system based on 

ultrasound signal analysis. Experimental studies on 1,400 

samples from five independent data sets are employed in this 

study. Two feature extraction methods based on spectral 

feature i.e. Linear Prediction Coefficient (LPC) and statistical 

features i.e. combination of Measured Embolus-to-Blood Ratio 

(MEBR), Peak Embolus-to-Blood Ratio (PEBR), entropy, 

standard deviation and maximum peak are used to extract the 

signal. Subsequently, four classifiers based on nearest neighbor 

approach i.e. k Nearest Neighbor (kNN), Fuzzy k-Nearest 

neighbor (FkNN), k Nearest Centroid Neighbor (kNCN), and 

Fuzzy-Based k-Nearest Centroid Neighbor (FkNCN) are used 

to evaluate the performance of the identification system. The 

experimental results show that FkNCN with statistical feature 

outperforms the other classifiers with the performance of 

92.45±2.12% is achieved.  

Keywords— Embolus detection; Transcranial Doppler 

Ultrasound;  Feature extraction; Classification.  

I.  Introduction  
Stroke is a disease due to the present of tiny particles 

called embolus which, travel in the arteries that connected 
toward and within the brain. A large amount of embolus 
may block the carotid system and this affects the amount of 
blood flowing toward the brain which leads to stroke event. 
The main symptoms of stroke can be detected through 
transient ischemic attack (TIA) or mini stroke that may 
occur within 24 hours, feeling weakness on one side of the 
body, clumsiness of the hands or fingers and in more serious 
cases which are related to inability to walk and to move the 
arms or facial muscles. Currently, stroke disease is the third 
cause of death and leads to high possibility of disability in 
Malaysia. Until now, stroke patients are hard to be fully 
recovered as it give permanent impairment of nerves system 
and some medication is only available for recovery of the 
mini stroke [1].  
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Following that, current research on stroke has focused on 

the study of embolus detection at the high risk location that 

commonly present in the middle cerebral artery in cerebral 

system [2]. The ability to observe the embolization rate and 

lesion in the identified location may improve the pre-clinical 

treatments to decrease the risk of stroke event among 

patients.  

      Currently, clinical practice in observing the occurrence 

of embolus in blood vessels under human skulls is done by 

using Transcranial Doppler (TCD) ultrasound machine [3]. 

By determining the frequency of embolus event, TCD can 

identify the conditions of the artery in which the blockage 

may affect the amount of blood flowing toward the brain 

[4]. Nevertheless, the detection of emboli based on TCD is 

still relying on human observer as a gold standard. As 

analyzing significant information of emboli event from the 

TCD machine is quite tedious and time-consuming job, thus 

an automatic identification system is greatly needed for 

detection of embolus occurrence.  

Previous studies on the embolus detection based on 

machine learning methods have been reported by many 

researchers. Recently a relatively new classification method, 

binary decision tree [5], Artificial Neural Network (ANN), 

K-Nearest Neighbors Rule (KNNR)[6][7] and Support 

Vector Machines (SVM) [8] have been proposed. The 

results shown that the accuracy performance to detect 

artefact and emboli composition is greater than 80%. 

However, there is no comparative study have been done 

among the classifiers performances. In this study, a 

comparative study on features selection and types of 

classifiers for emboli identification system based on 

ultrasound signal analysis is experimented. The multi-

frequency datasets are considered, following the previous 

technique that relies on the ultrasound beam pattern at 

frequencies range of 1.0 to 3MHz [9][10]. The developed 

system consists of three important procedures i.e. data 

collection, feature extraction and classification.  

The signal data were obtained by using a transcranial 

Doppler (TCD) system simulator. Subsequently, the signal 

data were extracted with the spectral feature i.e. Linear 

Prediction Coefficient (LPC) and statistical features i.e. the 

combination of Measured Embolus-to-Blood Ratio (MEBR), 

Peak Embolus-to-Blood Ratio (PEBR), entropy, standard 

deviation and maximum peak as the feature extraction 

[4][7]. In order to classify the embolus in the pattern 

matching process, various classifiers from the Nearest 

Neighbor (NN) family were used including k Nearest 

Neighbor (kNN)
8
, Fuzzy k-nearest neighbor (FkNN) [9], k 

nearest centroid neighbor (kNCN) [11], and Fuzzy-Based k-

Nearest Centroid Neighbor (FkNCN) [12].   

This paper has been outlined as follows. In Section 2, the 

methodology of this study including data acquisition, feature 

extraction and classification are discussed. The experimental 
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results are presented in Section 3 and finally, Section 4 

provides the conclusion. 

II. Methodology 

A. Data Collection 
The Transcranial Doppler Ultrasound Signal Simulator 

(version 2.3, Switzerland) was employed for database 

collection. A transducer was placed on the right and left side 

of the transtemporal (region) for the patients who were 

having more than 80% of symptomatic internal carotid 

artery stenosis. The sampling frequency was 8KHz. Five 

independent data sets of patients’ group with different probe 

position and transmitted frequency (1MHz - 3MHz)  are 

defined as in Table 1. All groups had the recording time of 

up to 40 minutes with the Doppler instrument’s sample 

volume depth was placed near the skull between 58 mm to 

62 mm. 

When an observer perceived the Doppler sonogram and 

suspected the emboli event, the permanent storage of the 

contents of the buffer was activated. As a result, a total of 

244 MES signals had been detected. Each signal was 

selected according to the chirping sound and sonogram 

image of the velocity profile as shown in Fig. 1. The desired 

signal was then chosen and randomly cropped with the time 

error estimation between 5 µs to 7 µs within the time delay. 

The reason of considering the time delay in the targeted 

signal is to mimic the real situation in which the error in a 

measurement would occur and unexpected calibration would 

therefore has to be encountered. The signals of the extracted 

features were then analyzed offline. 

TABLE I.  THE PARAMETERS FOR SIMULATED TIME SERIES FOR 

ULTRASOUND PROBE 

Group Frequency Setup Probe location SVL Depth 

1 2 MHz Right Side MCA 60 mm 

2 1.5 MHz Right Side MCA 60 mm 

3 2 MHz Left Side MCA 58 mm 

4 1 MHz Left Side MCA 62 mm 

5 3 MHz Left Side MCA 62 mm 

*MCA : Middle Cerebral Artery; SVL : Sample Volume Length. 

 

 
Figure 1.   Figure shows the analysis of embolic signals using TCD 

simulator at 2MHz transmit frequency and at depth of 50 mm from the 

probe placement. 

B. Feature Extraction 
In this study, two features from the spectral feature and 

statistical features were used for the development of the 
emboli detection. For the spectral feature, the LPC was 
employed in this study.  LPC feature extraction models the 
process of signal production and is defined as a digital 
method for encoding an analogue signal in which a 
particular value is predicted by a linear function of the past 
values of the signal [13]. The most important aspect of LPC 

is the linear predictive filter which allows the value of the 
next sample to be determined by a linear combination of 
previous samples. In other word, linear prediction filters 
attempt to predict future values of the input signal based on 
past signals. LPC analysis is based on the assumption that 
the relation between the current sample x(n) and first-order 
linear combination of the previous p samples given as: 
 

 

1 px(n) a x(n 1) ... x(n p)                                 (1)                                 

The linear predicted value x (n) with prediction 
coefficients, i for x(n) is presented as: 
 

 
p

i

i 1

x(n) a x(n i)


                                                  (2)                                                    

 
Consequently, LPC cepstrum can be derived through the 

LPC model. For a time sequence x(n) , complex cepstrums 

c (n) are represented as below: 
 

1c(n)            (3) 
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The database of LPC features in this study consists of 1200 
set LPC features from the 5 groups and 14 cepstrum 
coefficients per frame were extracted in this method. 

In the meantime, the combination of MEBR, PEBR, 

entropy, standard deviation and maximum peak were 

employed for the statistical features. The MEBR is the 

feature based on the ratios of the embolus to background 

signal within given short time interval. It can be computed 

in the time domain [14] and frequency domain [15]. The 

MEBR measured from the time domain representation is due 

to the intensity of the signal which can be clearly observed 

on the detected signal. The increase in the intensity is 

observed because of the passage of the embolus relative to 

the background signal. It can be measured by using (6).  

emb blood
10

blood

I
MEBR 10log

I


 

  
 

                      (6)

     

where 
emb bloodI 

 is the intensity of the embolus and the 

background signal and 
bloodI  is the intensity of the 

background signal. The value of intensity is defined as the 

power of two local maximum of the signal peaks as shown 

in Fig. 2. Meanwhile, PEBR is computed by replacing the 

average peak with the maximum peak of the signal in order 

to measure any significant difference between these two 

features. The values obtained by the MEBR and PEBR vary 

depending on the transmitted frequency, length of the 

attenuation of sample volume and focusing area. 

The entropy is used to separate the useful signal from the 

background noise. The calculation for the entropy can be 

stated as in (7). 
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where is a set of random signal and p(xi ) 

is a probability of a random signal xi.   

The other statistical features such as the standard deviation 

and maximum peak were also evaluated because of the 

randomness and measured distances of certain value for 

each sampling frequency of the signal. The standard 

deviation as written in (8), measures the fluctuation of the 

signal from the mean of the signal 

                     (8) 

where xi is the signal amplitude in the time domain and N is 

the total number of frequency sampling. 

 

 Figure 2.   Calculation of intensity obtained from the audio signal. 

C. Classification 
Classification technique in this work represents the 

technique of identifying emboli from the background signal 

based on a training set which its membership category is 

known. In this study, four classifiers i.e. kNN, FkNN, kNCN 

and FkNCN were investigated to identify embolic signal 

based on the extracted features.  

The kNN has been regularly used in practice since it is 

simple to be implemented and quite straightforward in the 

classification process. Moreover, it works fast for small 

training samples and does not need any prior knowledge 

about the structure in the data of the training samples [8]. 

Given a query point y, a set of training samples  
1

N

j j
T x


  

with the label classes, c1,c2,…n, where N is the number of 

training samples, xj is the training sample and n is the 

number of class. In order to select the kNN from the training 

samples, the distance between the query point and the 

training samples is determined as written in (9). 

( , ) ( ) ( )T

j j jd y x y x y x              (9) 

where d(y, xj) is the Euclidean distance, N is the number of 

training samples, xj is the training sample and y is the query 

point.  

In the absence of prior knowledge, most of the kNN 

classifiers use the Euclidean distance to measure the 

distance or similarity between the query point and training 

samples. The distances are consequently arranged in 

ascending order and the kNN is selected based on the 

training sample that has the smallest distance to the query 

point. Subsequently, the query point is classified by 

assigning the class label by the majority voting using the 

formula in (10).  

( )

arg max
N

j

M

x

y wc                                          (10) 

where the weight can be represented as: 

1

0

N

M jc x
w

otherwise

 
 


         (11)  

where yx,  are training and testing samples composed of 

feature N, respectively.  

On the other hand, the FkNN is an extensive study of 

kNN to solve the weighting issues in the kNN. This 

classifier is assigned a fuzzy membership for the query point 

rather than assigning the query point to the class label. The 

fuzzy membership is determined based on the weighted 

class and is given by (12). 
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













               (12) 

where i = 1,2,…,c, c is the number of classes, iju  is the 

membership degree of training sample, jx  ithe one which is 

selected as the nearest neighbor, jy x  is the L-norm 

distance between the query point x and its nearest neighbor 

and m is a fuzzy strength parameter which is used to 

determine how heavily the distance is weighted when 

calculating the contribution of each neighbor to the fuzzy 

membership values. The highest fuzzy membership value is 

considered as a winner for that query point. There are two 

ways to define 
iju . One is by using the crisp membership 

where the training samples assign all of the memberships to 

their known class and non-memberships to the other class. 

The other way is by using the constraint fuzzy membership 

such that when the k nearest neighbors of each training 

samples is found (say 
kx ), the membership of 

kx  in each 

class is assigned as (13). 

0.51 0.49( / k)
( )

0.49( / k)

j

ij k

j

n j i
u x

n j i

 
 



     (13) 

where 
jn denotes the number of neighbors of jth training 

samples.  

Subsequently, the query point is arranged to the class of 

with which it has the highest membership value: 

  arg max( ( ))ic y u y                                   (14) 

The kNCN is another extensive study of the kNN where 

this classifier was used a Surrounding Neighborhood (SN) 

rule to employ the distances and distributions of the training 

samples before the classification process. According to the 

SN rule, the distances of the k centroid neighbors should be 

closed to the query point as possible. On the other hand, the 

distribution of training samples is taken into account such 

that the k centroid neighbors are placed symmetrically 

around the query point. In this classifier, the first nearest 

centroid neighbor is determined by the shortest distance 

10

1
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N
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between the query point and training samples using (9). The 

subsequent nearest centroid neighbors, NCN

ix  for i=2,…,k 

is found by calculating the centroid point, 
c

ijx  where the 

formula of the centroid point is: 
1

1

i
NCN

i j

ic

ij

x x

x
i





 
 

 



                                  (15) 

The i
th

 nearest centroid neighbor can be found by computing 

the closest distance between the centroid point, 
c

ijx  and a 

query point which is given as: 

 ( , ) min ( ) ( )c c T c

ij ij ijd y x y x y x      (16) 

The query point is assigned to the class label which is most 

frequently represented by the k centroid nearest neighbors 

using the majority voting in (10).  

Finally, the FkNCN employed the surrounding-fuzzy 

based rule to find the nearest centroid neighbour. This 

classifier involved both of the centroid neighborhoods and 

the fuzzy membership. The main objective of the FkNCN 

was to optimize the performance results while considering 

the information of samples distribution and fuzzy 

membership values. Likewise to kNCN, the first centroid 

neighbor of this classifier is determined by selecting the 

training sample that was located the nearest to the query 

point. The first nearest centroid neighbor was set as 
1

NCNx . 

The subsequent nearest centroid neighbors for i=2,…,k are 

determined by calculating the centroid position of all the 

training samples except the training sample that had been 

selected as the nearest centroid neighbor. The centroid of a 

set of training samples,
c

ijx  can be defined as in (15).  

The k nearest centroid neighbor was determined by 

computing the shortest distance between the centroid of a set 

of a training samples and the query point. It was given as in 

(17).   

2
min ( )NCN c

r rj L
x y x                               (17) 

The process was repeated by determining the centroid 

between the training samples and previous nearest centroid 

neighbors. After the k nearest centroid neighbors had been 

determined, the next step was to assign a fuzzy membership 

for the k nearest centroid neighbors to class labelled as y 

rather than voting the k nearest centroid neighbors as a 

majority. By assigning the fuzzy membership, the FkNCN 

classifier became more advantageous as it was able to 

provide the next potential secondary structural class if the 

first one was wrongly predicted. 

This process was done by determining the weight that 

was inversely proportional to the distance between 
NCN

rx  

and y. The fuzzy membership found was: 
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  (18) 

where r = 1,2,...,C, with C as the number of classes and 
riu  

as the membership degree of k nearest centroid neighbors. 

The value of the fuzzy strength parameter was set at 2. 

This was because the fuzzy membership values were 

proportional to the inverse square of the distance. When it 

was set at 2, it led to an optimal result in the classification 

process. In the FkNCN, the constraint fuzzy membership is 

firstly used to ensure heavier weight is assigned to the 

training samples in its own class while lighter one was 

assigned to the other class. However, when the value 
riu  in 

constraint membership was infinity, the crisp membership 

led to a better classification accuracy. Thus, 
riu  is 

determined by using the combination of the constraint and 

crisp fuzzy memberships.  

After calculating all memberships for a query point, it 

was assigned to the class of the highest membership value as 

shown in (19). 

( ) arg max( ( ))NCN

rC y u y                          (19) 

where jn denotes the number of neighbors of jth training 

samples.  

III. Experimental Results 
The developed embolic signal identification system has 

been implemented in Matlab R2009 (b) and tested in Intel 

Core i7, 2.1GHz CPU, 2G RAM and the Windows 8 

operating system. In this experiment, the value of k was set 

to 5 for the kNN, FkNN, kNCN and FkNCN classifiers.  The 

experiments were evaluated through K-fold cross-validation 

method where the value of K was set to 10. As ten-fold 

cross-validation was set, 24 samples were chosen as the 

training samples, while the remaining samples were used for 

the testing purpose in this database. The advantage of this 

method is that all of the test sets are independent and the 

reliability and accuracy of the results can be improved. The 

results were performed by employing the CA rate.  

Table 2 summarizes results of embolus classification 

by using spectral features. It was also noticeable that the 

FkNN and kNCN performed well than kNN in all group. 

The FkNN was also comparable with the kNCN in terms of 

CA rate with the differences of less than 2%. However, it 

was found that the FkNCN performed the best CA rates in 

Group 5 with 10.51%, 8.29%, 4.49% and 0.04% better than 

the ones produced by the kNN, FkNN,  kNCN, respectively. 

This advantage occurred due to the combination of fuzzy 

and centroid in the searching stage. In addition, the FkNCN 

obtained the best CA rate on each condition with more than 

78% was achieved.  

TABLE II.  ACCURACY RESULTS OF EMBOLUS CLASSIFICATION BY 

USING SPECTRAL FEATURES  

Classifier Group 1 Group 2 Group 3 Group 4 Group 5 

kNN  
(%) 

67.33 
±5.93 

80.00 
±1.41 

72.80 
±3.81 

84.11  
±2.43 

80.00 
± 3.78 

FkNN 

(%) 

73.77 

±4.77 

84.00 

±1.58 

75.20 

±4.33 

88.74 

 ± 2.70 

82.22 

±5.87 

kNCN 
(%) 

72.22 
±2.41 

82.40 
±1.14 

77.11 
±4.73 

88.67 
 ±3.21 

86.02 
±4.62 

FkNCN 

(%) 

78.44 

±4.98 

86.40 

±2.07 

78.67 

±2.41 

89.60 

± 1.14 

90.51 

±5.33 
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The summary of the classification results by using 

statistical features are provided in Table 3. From this table, it 

was observed that all the classifiers provide satisfactory 

results of correct classification among groups (> 80%). The 

results also showed that the statistical features yield 

noticeably higher classification accuracy compared to 

spectral feature for most of the groups. For instance, the 

absolute improvements in classification accuracy of kNN for 

Group 1 and FkNCN for Group 3 were 85.02±2.07% and 

90.16±2.24%, respectively. In addition, it was found that the 

proposed FkNCN was consistently outperformed the other 

classifiers in terms of the CA rate. 

TABLE III.  ACCURACY RESULTS OF EMBOLUS CLASSIFICATION BY 

USING STATISTICAL FEATURES  

 

By examining Tables 2 and 3, there are some interesting 

points can be generally found. Firstly, the statistic features 

were consistently outperforms the spectral feature in most of 

groups. It can be concluded that although the spectral 

features is potentially used in most of speech recognition, 

this feature is harder to be intuitively correlated with the 

affective state such in embolic signal recognition. In the 

meantime, the statistic feature is potentially improving 

embolic identification accuracy over spectral feature. 

Moreover, the combination of MEBR, PEBR, entropy, 

standard deviation and maximum peak yields even further 

improvement in most cases.  
Secondly, it was found the FkNCN classifier to be more 

intuitive than other tested classifier in all groups. As an 
extension of the kNCN and FkNN classifiers, the behavior 
of FkNCN was similar to these classifiers. Nevertheless, the 
FkNCN employed more information in training samples 
distribution and weighting distance among k nearest 
centroid neighbors. As a result, the FkNCN classifier was 
able to correctly classify the samples as it provided more 
information than the other classifiers in term of samples 
distribution and weighting distance.  

IV. Conclusions 
In this paper, the embolic identification system based on 

ultrasound signal analysis has been studied and successfully 

implemented. The ultrasound signal data were obtained from 

five independent data sets of patients’ group with different 

probe position and transmitted frequency varies from 1MHz 

to 3MHz. subsequently, the data were extracted in the 

spectral feature i.e. LPC and statistical feature i.e. the 

combination of MEBR, PEBR, entropy, standard deviation 

and maximum peak. The segmented data then were 

compared with four classifiers from NN family i.e. kNN, 

FkNN, kNCN and FkNCN. A series of experiments, based 

on different features and classifiers were employed and the 

results indicate that statistical features outperform the 

spectral feature with more than 80% were obtained in all 

tested groups. The results also observed that the FkNCN 

provide the best classification among the four classifiers 

with more than 78% were obtained by using the spectral 

feature and more than 88% by using the statistical feature.  
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Classifier Group 1 Group 2 Group 3 Group 4 Group 5 

kNN  

(%) 

85.02 

±2.07 

85.00 

±4.42 

81.87 

±2.41 

80.69 

±3.11 

81.38 

±1.23 

FkNN 

(%) 

86.93 

±5.81 

88.08 

±2.34 

86.51 

±4.55 

85.32 

±3.23 

84.31 

±3.31 

kNCN 

(%) 

87.64 

±3.42 

87.46 

±5.24 

87.02 

±5.33 

86.57 

±4.12 

84.74 

±1.44 

FkNCN 

(%) 

88.87 

±3.01 

92.45 

±2.12 

90.16 

±2.24 

91.33 

±4.14 

89.04 

±2.42 


