

15

International Journal of Advances in Software Engineering & Research Methodology
 Volume 3 : Issue 1 [ISSN 2374-1619]

 Publication Date : 31 August, 2016

Using Textual Similarity for Test Suite

Prioritization
Iyad Alazzam

Abstract—Techniques in test suite reduction concentrated

on different testing activities in general and regression testing

in specific. Regression testing is typically performed after

updating or maintaining the software in order to verify that the

occurred changes do not incur any problem. Executing all test

suites after any modification increases the cost of testing. Thus

reduction in test suites resolves this problem by including only

relevant test cases. In this paper, a new technique is proposed

and presented to reduce the test suite by calculating the

similarity between test cases and the source implemented

through using Latent Semantic Indexing (LSI) .Moreover the

proposed technique is evaluated through calculating the code

coverage using EclEmma.

Keywords—Regression testing, test case, Latent Semantic

Indexing (LSI), and test suite prioritization

I. Introduction
Releasing a new oran updated version of software

increases the percentage of estimated revenue and profits
[1]. Nonetheless, in advance and before releasing the
software, the new release must be tested in order to ensure
that it meets its specifications that have been required and
proposed by stakeholders. The testing process is an
expensive one which may exceed more than fifty percent of
the total cost of the software development process [2].
Moreover exhaustive testing is impossible especially when
the software complexity is high. Testing cost grows
exponentially along with the product size [3]. Hence, the test
plan should include how to prioritize test cases’ selection
specially when testing resources are limited. Re-execution of
all test suites after modifying software takes a significant
time. For one software that consists of twenty thousand lines
of codeit requires more than one month to execute the whole
test suite[4][5]. Therefore, selecting a subset of test suites
which is effective and efficient in detecting defects is
required. Test prioritization is one of the main activities in
regression testing in addition to test cases’ selection and
reduction [6]. Test prioritization process prioritizes the test
suites to be executed which helps the testing team to
determine which test suite should be executed first. The test
suite with high priority tends to be executed first. Many
prioritization techniques are based on previous awareness of
the defects and which test cases have the ability to detect
these faults. This leads to optimal prioritization which is
considered a perfect method in optimization from theory
perspective [6]. However, it needs to take into account all
likely ordering and arranging of test cases where the run
time is going to be high in the worst case depending on the
size of the test suite. This paper presents a new technique in
prioritizing test suites. The technique is based on finding the
strength of the test suite according to the source code of the
System Under Test (SUT). The strength (i.e. the quality of
the test suite selection) is measured through finding the
similarity among test cases in the test suite with the methods
in source code. Latent Semantic Indexing (LSI) is used to
measure the similarity between test cases and source code.

The rest of the paper is organized as the following: next
section provides the current research in the area of test suite
prioritization. Section three explains and illustrates the
textual similarity based test suite reduction approach, and
section 4 shows the experiments and the analysis of the
conducted experiments. Section 5 concludes the paper.

II. Related Work
Many researches are presented about test cases reduction

assessment and prioritization which are considered major
processes in regression testing. In this section only the
related research to test suite prioritization is presented.
Prioritization techniques can be based on many perspectives
and factors such as risk, cost, and coverage criteria. Test
cases prioritization are proposed based on software coverage
techniques such as statement coverage, or branch coverage.
In statement coverage prioritization technique each test case
is executed and the number of statements is calculated and
then the test cases are prioritized according to the number of
covered statements. In branch coverage, each test case is
executed and the number of covered branches is calculated.
Test cases are then prioritize according to the number of
covered branches. Mutation testing is used as well in
prioritization through assessing and determining the number
of mutants that have been killed by every test case and the
test case that killed the highest number of mutants is
considered to be the highest from prioritization perspective
[12][13] . De Souza et al. present an approach in test case
selection using particle swarm optimization and based on
two objectives. The first objective is the execution cost and
the second is the functional requirement coverage [7]. He et
al. propose an approach in test suite reduction through
combining information from both execution cost and code
coverage using genetic algorithms [8]. Yoon et al. propose a
technique for new test cases’ prioritization through
evaluating the value of risk disclosure for requirements
along with the risk analyst to assess the related test cases
and in that way the priority of test cases is determined [9].
Stallbaum, Metzger and Pohl introduce an approach in test
case prioritization called RiteDAPin [10]. This approach
creates automatically test case priorities through evaluating
activity diagram risk information. RiteDAPinserts new risks
to the activity diagram according to the associated reaction.
The test case scenario priority is decided according to the
reactions which have the maximum total of risk values.
Chen, Probert and Sim prioritize the test cases based on the
safety test through assessing severity probability and cost of
test cases. The severity probability is computed through
multiplying the defects number by the average severity of
defects [11].

III. 3. Textual Similarity Based
Test Suit Reduction

Similarity between test cases and methods
(STcM)(tci,mj) is the cosine among vector tci and vector mj

16

International Journal of Advances in Software Engineering & Research Methodology
 Volume 3 : Issue 1 [ISSN 2374-1619]

 Publication Date : 31 August, 2016

following indexing. While the range values of cosine is from
-1 to 1. Thus when the value is close to 1 it means that the
test case is more similar to the compared method.

 ()

Total weight for a given test case (TWTCi) is the
summation of the similarity between all the methods in the
system under test for the given test case.

 ∑ ()

Total weight for a given test suite (TWTSi) is the
summation of all total weightsof test cases in the test suite:

 ∑

 (3)

IV. Experiments and Results
With the intention of assessing test suite prioritization

using similarity weight, an open source code is selected. The
open source code is called MARC4J, which is an application
for dealing with MARC records [14] . The reason behind
selecting this application is that it includes a test suite that is
generated and constructed by an independent party, and thus
no bias is occurred.

The experiment consists of the following stages: first the
similarity between each test case and method in MARC4J
application is calculated as shown in Table 1. After that the
total weight for a given test case is calculated and then the
total weight for the whole test suite is calculated as shown in
Table2. Finally, the coverage is calculated for each test suite
using EclEmma to evaluate the proposed approach.
EclEmma is used to provide coverage property for six
different coverage counters: Instruction, Branches, Lines,
Methods, Types and Complexity as shown in Figure 1 and
Table 3. EclEmma is an Eclipse open source coverage tool
[15] .

TABLE I: AN EXAMPLE OF SIMILARITY AMONG TEST CASES

AND METHODS

Test Case

Name

Method

Name
Class Name Weight

testFind

 Find ControlFieldImpl 0.745

 getData ControlFieldImpl 0.167

 Find DataFieldImpl 0.745

 Find RecordImpl 0.745

 Find RecordImpl 0.745

 Find RecordImpl 0.745

 Find SubfieldImpl 0.745

 getData SubfieldImpl 0.167

 getData ControlField 0.167

 DataField DataField 0.2

 Record Record 0.187

 Find Record 0.745

 Find Record 0.745

 Find Record 0.745

 Subfield Subfield 0.071

Table 1 shows the similarity(weight) among the test case
"testFind" with methods in MARC4J application. The
results are calculated through employing LSI technique. The
highest weight means that the test case and method are more
similar in comparison with low weight values. In other
words, the body of the test case and the body of the method
is more likely when the weight is high.

Table II Test Suite Weight

Test Suite Weight
DataFiledTest 3.6

ControlFieldTest 0.4

RecordTest 11.3

LeaderTest 3.9

ReaderTest 11.5

WriterTest 31.5

RoundtripTest 12.5

Table 2 shows the weight for each selected test suites.
The results show that the WriterTest has the highest weight.
This means that the test cases in the WriterTest test suite
will cover more code than other test cases in other test
suites. In addition the results show that the RoundtripTest
,ReaderTest and Record test have almost similar weights,
and the LeaderTest and DataFieldTest have also similar
weights where ControlFieldTest has the lowest weight .

Figure1. EclEmma output

Figure1 shows the coverage for the WriterTest suite. The
results show that the Type, Methods, Lines, Instructions,
Complexity, and Branches coverage counters obtained are:
15.7%, 6.6%, 3%, 2.6%, 1.4% and 0.7% respectively. In
addition, the results show that this test suite has achieved the
highest coverage in comparison with all other test suites.
The results prove that the test suites with high weight covers
more than the test suite with low weight.

17

International Journal of Advances in Software Engineering & Research Methodology
 Volume 3 : Issue 1 [ISSN 2374-1619]

 Publication Date : 31 August, 2016

Table 3: Test Suite coverage Results

T
e
st S

u
ite

In
str

u
c
tio

n

B
ra

n
c
h

e
s

L
in

e
s

M
e
th

o
d

s

T
y

p
e
s

C
o

m
p

le
x
ity

T
o

ta
l

ControlFieldTest 0.7 0.4 0.9 3.4 5.7 0.7 11.8

DataFiledTest 1 0.5 1.4 5.6 7.1 1.1 16.7

LeaderTest 2 0.7 2.1 8 4.3 1.6 18.7

ReaderTest 1.7 0.6 2 7.9 12.9 1.1 26.2

RecordTest 0.6 0.4 0.8 1.9 5.7 0.5 9.9

RoundtripTest 1.1 0.4 1.4 3.6 10 0.8 17.3

WriterTest 2.6 0.7 3.0 6.6 15.7 1.4 30

Table 3 shows the results of the experiments. The results

show that the test suite "WriterTest" has achieved the
highest coverage (30%) in comparison with other test suites.
Then the "ReaderTest" comes the second with (26.2%).
"DataFiledTest", "LeaderTest" and "RoundtripTest" have
achieved (16.7%, 18.7%, 17.3%) respectively. Moreover the
"RecordTest" achieved the lowest coverage(9.9%). Whereas
the weight of "RecordTest" is higher than the weight of
"ControllFiledTest", this is because "RecordTest” consists
of just two test cases and their implementations involves
common methods that are used extensively in the source
code. The proposed approach might be helpful in the
classification of test suites into other levels according to
their usage(e.g. generic or specific) .

V. Conclusion

In this paper a new technique for test suite prioritization
is presented. The technique is based on the textual similarity
among test cases in the test suite and the methods of the
system under test. The approach is different than other
approaches from thepre-knowledge of the test execution
results. The proposed approach does not require any pre-
knowledge or results of test cases execution. The textual
similarity is determined and calculated through using latent
semantic indexing technique (LSI). The results of the
experiment show the effectiveness of the proposed
technique.

References

[1] Huang, LiGuo, and Barry Boehm. "How much software quality
investment is enough: A value-based approach." Software, IEEE 23.5
(2006): 88-95.

[2] Kit, Edward. Software testing in the real world. Addison-wesley,
1995.

[3] Whittaker, James A. "What is software testing? And why is it so
hard?."Software, IEEE 17.1 (2000): 70-79.

[4] Rothermel, Gregg, et al. "Prioritizing test cases for regression
testing."Software Engineering, IEEE Transactions on 27.10 (2001):
929-948.

[5] Krishnamoorthi, R., and S. A. Sahaaya Arul Mary. "Factor oriented
requirement coverage based system test case prioritization of new and
regression test cases." Information and Software Technology 51.4
(2009): 799-808.

[6] Yoo, Shin, and Mark Harman. "Regression testing minimization,
selection and prioritization: a survey." Software Testing, Verification
and Reliability 22.2 (2012): 67-120.

[7] de Souza, Luciano S., et al. "A multi-objective particle swarm
optimization for test case selection based on functional requirements
coverage and execution effort." Tools with Artificial Intelligence
(ICTAI), 2011 23rd IEEE International Conference on. IEEE, 2011.

[8] He, Zhen-feng, Bin-kui Sheng, and Cheng-qingYe. "A genetic
algorithm for test-suite reduction." Systems, Man and Cybernetics,
2005 IEEE International Conference on. Vol. 1. IEEE, 2005.

[9] Yoon, Miso, et al. "A Test Case Prioritization through Correlation of
Requirement and Risk." Journal of Software Engineering and
Applications 5.10 (2012): 823.

[10] Stallbaum, Heiko, Andreas Metzger, and Klaus Pohl. "An automated
technique for risk-based test case generation and
prioritization." Proceedings of the 3rd international workshop on
Automation of software test. ACM, 2008.

[11] Chen, Yanping, Robert L. Probert, and D. Paul Sims. "Specification-
based regression test selection with risk analysis." Proceedings of the
2002 conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 2002.

[12] Rothermel, Gregg, et al. "Prioritizing test cases for regression
testing."Software Engineering, IEEE Transactions on 27.10 (2001):
929-948.

[13] Andrews, James H., et al. "Using mutation analysis for assessing and
comparing testing coverage criteria." Software Engineering, IEEE
Transactions on 32.8 (2006): 608-624.

[14] http://marc4j.tigris.org/

[15] http://www.eclemma.org/

About Author:

Iyad M Alazzam, is an assistant professor

in the department of computer information

systems at Yarmouk University in Jordan,

he has received his Ph.D degree in

software engineering from NDSU (USA).

His master from LMU (UK) in electronic

Commerce and his B.Sc in computer

science and information systems from

Jordan University of Science and

Technology in Jordan. His research

interests lays in software engineering and

software testing.

http://marc4j.tigris.org/
http://www.eclemma.org/

