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Abstract—Spectrum sensing is a fundamental technique of 

cognitive radio (CR) system to detect the presence of primary 

user (PU) transmissions in the licensed spectrum. This paper 

investigates secondary user (SU) selection based cooperative 

spectrum sensing under exponentially embedded family (EEF) 

criterion. With an aim to estimate the optimal number of 

cooperative users who are better fitting for participating in 

cooperative sensing, we propose AIC, MDL, and EEF criteria 

to select the potential users among all cooperative users in the 

CR network. Based on the estimated user number, the global 

test statistic (GTS) is generated, and finally the fusion center 

(FC) makes the global decision on the presence/absence of the 

PU signal. Analysis and simulations verify that the proposed 

user selection based cooperative sensing schemes can 

significantly improve the spectrum sensing performance. 

Keywords—exponentially embedded family, user number 

estimation, user selection, cooperative spectrum sensing, 

cognitive radio network. 

I.  Introduction 
Cognitive radio (CR) technology has been motivated for 

solving the problem of licensed spectrum under-

utilization[1]. Key features of a CR transceiver include the 

radio environment awareness and spectrum intelligence. CR 

exploits the underutilized licensed spectrum and access it in 

an opportunistic manner by means of identifying the 

licensed spectrum status prior to secondary transmission. 

The SUs frequently perform spectrum sensing to detect the 

presence of the PUs, in order not to cause interference to the 

active PUs. Spectrum sensing is a fundamental and agile 

technique to detect the PU transmissions. There are a variety 

of spectrum sensing techniques that can be applied at an 

individual CR user or multiple CR nodes in a collaborative 

manner: energy detection (ED), matched filtering (MF) 

based methods, cyclostationary detection and so forth[2]. 

Depending on no a priori knowledge of the PU signal, ED is 

widely used for its simplicity and low cost in 

implementation. However, ED is vulnerable to noise power 

uncertainty problem and suffers from unsatisfactory sensing 

performance. 

To overcome the shortcomings of ED, various 

cooperative spectrum sensing methods have been proposed 

to ameliorate the global sensing performance with the help  
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of multiple SUs reporting their individual spectrum 

observations to the fusion center (FC) in the CR network. 

Among the existing methods, eigenvalues based sensing 

strategies were proposed [3] and serve effectively without 

requiring readily available a priori knowledge. The 

maximum eigenvalue detection (MED) method extracts the 

maximum eigenvalue, as the GTS for final decision, of the 

sample covariance matrix calculated from a limited number 

of received signal samples [4]. Maximum to minimum 

eigenvalue (MME) method generates the GTS as the ratio of 

the maximum eigenvalue to the minimum eigenvalue [5]. 

Energy with minimum eigenvalue (EME) algorithm 

compares the received signal energy to the minimum 

eigenvalue of the sample covariance matrix, which is 

computed from the received signal samples only[5]. The 

MED, MME and EME algorithms only depend on the 

received signal samples for detection, and no information on 

the transmitted signal and channel is demanded. 

It is worth noting that the optimally combined energy 

detection (OCED) and blindly combined energy detection 

(BCED) were proposed [6]. They are intrinsically identical 

to the MED approach with different implementation 

requirements. OCED relies on the ideal covariance matrix of 

the received PU signal, and adopts the maximum 

eigenvector to combine the sample vectors in generating 

GTS. Therefore, OCED substantially outperform ED, at the 

price of obtaining PU signal covariance, which is usually 

infeasible in practice. On the contrary, BCED does not 

require any information (totally blind) and estimates the 

eigenvector by using the received signal samples only. 

Owing to the blind processing manner, BCED is only 

capable of approaching the sensing performance of ED. 

Within the framework of the abovementioned 

cooperative sensing algorithms, taking into account the 

different signal propagation distances and environments 

between the PU transmitter and the individual SU detectors, 

we propose to divide all the SUs in two groups. One group 

contains the SUs with strong received PU signal components 

and the other group is made up of the SUs receiving very 

weak PU signal only. The philosophy of grouping the users 

(or viewed as user selection) is that if we can strengthen the 

former group’s effects in sensing and ignore the latter group 

at all, we may achieve better sensing performance. 

Intuitively, a straightforward way to distinguish the SUs 

in different groups is to first estimate the number of SUs in 

each group and then separate them by comparing their 

spectrum observations. The estimation of the number of SUs 

in the group with strong signal strength is addressed as a 

main contribution of this paper. We investigate optimal SU 

number estimation strategies under the criteria of AIC, 

MDL, and EEF, respectively. After the SUs are selected out 

and tagged in the desired group, we can generate the GTS 

with the conventional cooperative sensing methods. 
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Analysis and simulation verified that the proposed user 

selection based cooperative spectrum sensing schemes yield 

improved sensing performance. 

The rest of this paper is organized as follows. Section II 

describes the system model. From Section III to IV, we 

develop different user selection schemes under different 

criteria. In section V, practical implementations of the 

proposed schemes are given. Simulations and discussions 

are given in section VI. Section VII concludes the paper. 

Notations: boldface capital and small letters are used to 

denote matrices and vectors, respectively; superscript (:)T(:)T  

and (:)H(:)H  stand for transpose and Hermite transpose, 

respectively; E[:]E[:] represents the expectation operation; 

diag(:)diag(:), Tr(:)Tr(:) and k:kk:k refer to a diagonal matrix, the trace 

of a matrix, and the Euclidean norm, respectively. 
Moreover, I mI m  is an identity matrix of order m. 

II. System Model 

A. Received Signal and Statistical 
Properties 
Suppose multiple cooperative SUs are deployed in the 

CR network, where each SU is equipped with a single 

antenna. For the FC, the spectrum observations are collected 

based on a set of N discrete-time received signal sample 

vectors x[n];n = 0;1;¢¢¢;N ¡ 1x[n];n = 0;1;¢¢¢;N ¡ 1. The i-th component of 

x[n]x[n], denoted as xi [n]; i = 0;1;¢¢¢;M ¡ 1xi [n]; i = 0;1;¢¢¢;M ¡ 1, is the spectrum 

data of the i-th SU at time index n, where M is the number 

of cooperative SUs. For convenience, an aggregate 

observation matrix at the FC is defined as: 

X = [x[0]; x[1];¢¢¢;x[n]¢¢¢;x[N ¡ 1]]X = [x[0]; x[1];¢¢¢;x[n]¢¢¢;x[N ¡ 1]]          (1) 

The hypothesis test of spectrum sensing is hence given 

below: 

H0 : x[n] = ´ [n];H0 : x[n] = ´ [n];                              (2) 

H1 : x[n] = s[n] + ´ [n];H1 : x[n] = s[n] + ´ [n];                        (3) 

where ´ [n]´ [n] is the additive noise sample vector at the FC, 

among which the entries are independent and identically 

distributed (iid) circularly symmetric complex Gaussian 

(CSCG) variables with zero mean and covariance matrix:  

R ´ = E
£
´ [n]´ H [n]

¤
= ¾2

´ I MR ´ = E
£
´ [n]´ H [n]

¤
= ¾2

´ I M ,                   (4) 

and s[n]s[n]is the received primary signal to be detected with 

covariance matrix: 

Rs = E
£
s[n]sH [n]

¤
Rs = E

£
s[n]sH [n]

¤
.                           (5) 

As for the covariance matrix of the received signal x[n]x[n], 

it is: 

R x = E
£
x[n]xH [n]

¤

= E
£
s[n]sH [n]

¤
+ E

£
´ [n]´ H [n]

¤

= R s + R ´ :

R x = E
£
x[n]xH [n]

¤

= E
£
s[n]sH [n]

¤
+ E

£
´ [n]´ H [n]

¤

= R s + R ´ :              (6) 

In practice, based on a limited number of received signal 

samples, the covariance matrix of x[n]x[n] is estimated as:  

R̂ x =
1

N

N ¡ 1X

n= 0

x [n]x H [n];R̂ x =
1

N

N ¡ 1X

n= 0

x [n]x H [n];                     (7) 

where R̂xR̂x  is feasible to perform an eigen-decomposition as 

R̂x = U x¤ x U H
xR̂x = U x¤ x U H
x  with U xU x  being the unitary eigenvector 

matrix and ¤ x¤ x  the diagonal eigenvalue matrix, respectively. 

Furthermore, it is worth noting that R̂xR̂x  can be used to 

generate the test statistic. Under hypotheses H 0H 0 , we have 

R s = 0R s = 0. Thus, when the primary signal is not present the 

sample covariance matrix of the received signal will be 

R̂ x = R ´ = ¾2
´ I MR̂ x = R ´ = ¾2
´ I M . 

B. Global Test Statistics Generation 
of Existing Algorithms 
The eigenvalue based detectors are salient methods for 

cooperative spectrum sensing. It is usually assumed that 

each cooperative SU sends its test statistic to the FC and 

then the FC makes a final decision based on the fused GTS. 

In [6], optimally combined energy detection (OCED) 

and its blind version (BCED) employ ED after combining 

the received signal samples in space and time, based on the 

principle of maximizing the SNR. Optimal combining needs 

information of the PU source signal and channel, which is 

usually unknown in practice. Blind combing does not 

demand any a priori information of the source signal and 

channel and estimates R xR x  using the received signal samples 

only. The GTS of OCED and BCED are respectively:  

TOCED (N ) = 1
N

P N ¡ 1
n = 0 jjz(n)jj2;TOCED (N ) = 1

N

P N ¡ 1
n = 0 jjz(n)jj2;                 (8) 

TBCED (N ) = 1
N

P N ¡ 1
n= 0 jjẑ(n)jj2;TBCED (N ) = 1

N

P N ¡ 1
n= 0 jjẑ(n)jj2;                 (9) 

where z(n) = ¯x(n)z(n) = ¯x(n), ẑ(n) = ^̄x(n)ẑ(n) = ^̄x(n) with ¯̄  the eigenvector 

of R xR x  corresponding to its maximum eigenvalue ¸ max¸ max , and 
^̄̂̄  the eigenvector of R̂xR̂x  corresponding to its maximum 

eigenvalue ^̧max
^̧

max . 

III. User Selection Based 
Cooperative Sensing 

A. Estimation of the Number of SUs 
in Sensing  
Usually, it is assumed that all the M SUs participate in 

reporting spectrum observations to the FC and the FC fuses 

all the data from them into the GTS, for which OCED, and 

BCED are good examples. 

In practice, the SUs deployed at different physical 

locations within the CR network are undergoing different 

channel effects and, consequently, the eigenvalues are 

distributed as ¸ 1;x ¸ ¸ 2;x ¸ ¢¢¢¸ ¸ K ;x À ¸ K + 1;x ¸ ¢¢¢̧ ¸ M ;x¸ 1;x ¸ ¸ 2;x ¸ ¢¢¢¸ ¸ K ;x À ¸ K + 1;x ¸ ¢¢¢̧ ¸ M ;x , 

where the first K eigenvalues are much greater than the rest 

(M−K) eigenvalues. In this sense, the SUs corresponding to 

the first K eigenvalues among all cooperative users may 

contribute much more than the others. The actual 

environment of each SU varies in general, and hence results 

in different eigenvalues of the sample covariance matrix R sR s 
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where the eigenvalues stand for the power of the pure PU 

signal received at different SUs. With an aim to improve the 

cooperative sensing performance, we need to determine 

dimension of the PU signal receiving space where only 

some SUs receive sufficiently strong PU signals. By 

distinguishing the SUs in good channel condition, we can 

easily mitigate the aggregated noise effects resulted by the 

SUs containing very week PU signal components in their 

received signals. 

Potential methods of estimating the number of SUs, who 

are receiving strong PU signals, are Akaike Information 

Criterion (AIC) and Minimum Description Length (MDL). 

As the basic information theory criterion (ITC) widely used 

for source number estimation [7], we propose to use AIC 

and MDL for estimating the number of potential SUs in 

cooperative sensing. The cost functions of AIC and MDL 

have the following form [8]: 

YA IC = ¡ 2N log

8
>>>><

>>>>:

MQ

i = K + 1

l i

µ
1

M ¡ K

MP

i = K + 1

l i

¶ (M ¡ K )

9
>>>>=

>>>>;

+ 2K (2M ¡ K );YA IC = ¡ 2N log

8
>>>><

>>>>:

MQ

i = K + 1

l i

µ
1

M ¡ K

MP

i = K + 1

l i

¶ (M ¡ K )

9
>>>>=

>>>>;

+ 2K (2M ¡ K );

(10) 

YM DL = ¡ 2N log

8
>>>><

>>>>:

MQ

i = K + 1

l i

µ
1

M ¡ K

MP

i = K + 1

l i

¶ (M ¡ K )

9
>>>>=

>>>>;

+ K (2M ¡ K )logN;YM DL = ¡ 2N log

8
>>>><

>>>>:

MQ

i = K + 1

l i

µ
1

M ¡ K

MP

i = K + 1

l i

¶ (M ¡ K )

9
>>>>=

>>>>;

+ K (2M ¡ K )logN; 

(11) 

where l il i  denotes the i-th decreasing ordered eigenvalues of 

the sampled covariance matrix 

Rx (l1 > l2 > ¢¢¢> lK > lK + 1 ¢¢¢> lM )Rx (l1 > l2 > ¢¢¢> lK > lK + 1 ¢¢¢> lM ) . The estimated 

number of SUs receiving strong PU signals is determined by 

choosing the minimum of (10) or (11), which are given 

respectively as: 

K̂ AIC = argmin
K = 0;1;¢¢¢;M ¡ 1

YAIC(K )K̂ AIC = argmin
K = 0;1;¢¢¢;M ¡ 1

YAIC(K )              ( 12) 

K̂ MDL = argmin
K = 0;1;¢¢¢;M ¡ 1

YM DL (K )K̂ MDL = argmin
K = 0;1;¢¢¢;M ¡ 1

YM DL (K )              (13) 

However, owing to the fact that AIC and MDL do not 

satisfy the consistency estimates, and are greatly affected by 

the SNR and N, AIC and MDL based estimation methods 

fail to guarantee satisfactory precision in low SNR scenarios 

and therefore only yield poor cooperative sensing 

performance eventually. In order to improve the estimation 

performance, we consider the criterion of exponentially 

embedded families (EEF) to replace AIC and MDL in 

estimation. The EEF function is expressed as [9]:  

YEEF (K ) =

½

LK (x) ¡ ' K

·

log

µ
LK (x)

' K

¶

+ 1

¸¾

¢u

µ
LK (x)

' K

¡ 1

¶

;

YEEF (K ) =

½

LK (x) ¡ ' K

·

log

µ
LK (x)

' K

¶

+ 1

¸¾

¢u

µ
LK (x)

' K

¡ 1

¶

;

, 

(14) 

where u(¢)u(¢) represents the unit step function, the penalty term 

' K = K (2M ¡ K ) + 1¼K (2M ¡ K )' K = K (2M ¡ K ) + 1¼K (2M ¡ K )  represents the 

adaptive parameter, and LK (x)LK (x) is the likelihood ratio 

function defined as: 

LK (x) , 2log
f (xjR̂K )

f (xjR̂0)
LK (x) , 2log

f (xjR̂K )

f (xjR̂0)
,                    (15) 

where R̂ 0R̂ 0 is the sample covariance matrix under reference 

model (K=0) and f (xjR̂K ) = f ( x[1]; x[2];¢¢¢;x[N]j R̂K )f (xjR̂K ) = f ( x[1]; x[2];¢¢¢;x[N]j R̂K ) 

is the maximum likelihood estimation (MLE) of a Gaussian 

probability density function with N samples. 

According to the theory of matrix decomposition, we 

have 

R̂K =

KX

i = 1

(^̧i ¡ ¾̂2
´ )#̂ i #̂

H

i + ¾̂2
´ I MR̂K =

KX

i = 1

(^̧i ¡ ¾̂2
´ )#̂ i #̂

H

i + ¾̂2
´ I M                (16) 

where ^̧
1 > ^̧

2 > ¢¢¢> ^̧
K

^̧
1 > ^̧

2 > ¢¢¢> ^̧
K  are eigenvalues of the 

covariance matrix R̂KR̂K  and #̂1; #̂2; ¢¢¢; #̂K#̂1; #̂2; ¢¢¢; #̂K  are 

corresponding eigenvectors. The MLE of the eigenvalues 

and eigenvectors of R̂KR̂K  can be denoted as: 

^̧
i = l i ; i = 1; 2; ¢¢¢; K^̧
i = l i ; i = 1; 2; ¢¢¢; K                       (17) 

#̂ i = u i ; i = 1; 2; ¢¢¢; K#̂ i = u i ; i = 1; 2; ¢¢¢; K                      (18) 

where the eigenvalues are 

l1 > l2 > ¢¢¢> lK > lK + 1 > ¢¢¢> lMl1 > l2 > ¢¢¢> lK > lK + 1 > ¢¢¢> lM  with corresponding 

eigenvectors u1;u2; ¢¢¢;uMu1;u2; ¢¢¢;uM . If R̂KR̂K  in (16) is used in (15), 

the function of EEF is changed as: 

YEEF (K ) = f ¡ 2N (®+ ¯ ¡ ° ) ¡ K (2M ¡ K )

¢

·

log

µ
¡ 2N (®+ ¯ ¡ ° )

K (2M ¡ K )

¶

+ 1

¸ ¾

¢u

½
¡ 2N (®+ ¯ ¡ ° )

K (2M ¡ K )
¡ 1

¾

YEEF (K ) = f ¡ 2N (®+ ¯ ¡ ° ) ¡ K (2M ¡ K )

¢

·

log

µ
¡ 2N (®+ ¯ ¡ ° )

K (2M ¡ K )

¶

+ 1

¸ ¾

¢u

½
¡ 2N (®+ ¯ ¡ ° )

K (2M ¡ K )
¡ 1

¾
     (19) 

where the parameters are,  

®= log

Ã
KY

i = 1

l i

!

;®= log

Ã
KY

i = 1

l i

!

;                            (20) 

¯ = (M ¡ K ) log

Ã
1

M ¡ K

MX

i = K + 1

l i

!

;¯ = (M ¡ K ) log

Ã
1

M ¡ K

MX

i = K + 1

l i

!

;           (21) 

° = M log

Ã
Tr (R̂ 0)

M

!

:° = M log

Ã
Tr (R̂ 0)

M

!

:                         (22) 

The EEF criterion based estimation can be further 

improved by employing Gerschgorin unitary transformation 

in data processing [10]. The expression of GEEF estimation 

algorithm is: 

YGEEF (K ) =
©
¡ 2N (®0+ ¯0 ¡ ° 0) ¡ K 2

¢

·

log(
¡ 2N (®0+ ¯0 ¡ ° 0)

K 2
) + 1

¸ ¾

¢u

µ
¡ 2N (®0+ ¯0 ¡ ° 0)

K 2
¡ 1

¶

;

YGEEF (K ) =
©
¡ 2N (®0+ ¯0 ¡ ° 0) ¡ K 2

¢

·

log(
¡ 2N (®0+ ¯0 ¡ ° 0)

K 2
) + 1

¸ ¾

¢u

µ
¡ 2N (®0+ ¯0 ¡ ° 0)

K 2
¡ 1

¶

;

   (23) 

where the parameters are 
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®0 = log

Ã
KY

i = 1

l0i

!

;®0 = log

Ã
KY

i = 1

l0i

!

;                         (24) 

¯0 = (M ¡ K ¡ 1) log

Ã
1

M ¡ K ¡ 1

M ¡ 1X

i = K + 1

l0i

!

;¯0 = (M ¡ K ¡ 1) log

Ã
1

M ¡ K ¡ 1

M ¡ 1X

i = K + 1

l0i

!

;    (25

) 

° 0 = (M ¡ 1) log

Ã
Tr (Ẑ

K

11)

M ¡ 1

!

:° 0 = (M ¡ 1) log

Ã
Tr (Ẑ

K

11)

M ¡ 1

!

:                (26) 

where l i
0(i = 1;2;¢¢¢; M ¡ 1)l i
0(i = 1;2;¢¢¢; M ¡ 1) is the i-th eigenvalue of the 

matrix R̂KR̂K , ẐK
11 = diag[l̂1; l̂2; ¢¢¢; l̂K ; ¾̂2

n ; ¢¢¢; ¾̂2
n ]ẐK

11 = diag[l̂1; l̂2; ¢¢¢; l̂K ; ¾̂2
n ; ¢¢¢; ¾̂2

n ]. As for 

l̂ îl i , it is the MLE of l0i , l̂ i = l0i (i = 1;2;¢¢¢;K )l0i , l̂ i = l0i (i = 1;2;¢¢¢;K ),  

l̂K + 1 = l̂K + 2 = ¢¢¢̂lM ¡ 1 = ¾̂2
n =

1

M ¡ K ¡ 1

M ¡ 1X

i = K + 1

l0i :l̂K + 1 = l̂K + 2 = ¢¢¢̂lM ¡ 1 = ¾̂2
n =

1

M ¡ K ¡ 1

M ¡ 1X

i = K + 1

l0i : 

Taking into account the EEF computational complexity 

which is mostly determined by the eigenvalue 

decomposition of the covariance matrix, we propose to use 

the received signal power (SP), instead of the eigenvalues, 

in EFF and come up with the SPEEF to reduce the 

complexity. We assume that the local power of the i-th 

individual SU is obtained with N samplers, and hence 

computation of the signal power µi =
P N ¡ 1

n = 0 jx i [n]j2µi =
P N ¡ 1

n = 0 jx i [n]j2 would 

be very cost efficient and fast. With submission of µiµi   in 

(16), the SPEEF function is: 

YSPEEF (K ) =
n
¡ 2N (®

00

+ ¯
00

¡ °
00

) ¡ K (2M ¡ K )

¢

"

log

Ã
¡ 2N (®

00

+ ¯
00

¡ °
00

)

K (2M ¡ K )

!

+ 1

#)

¢u

Ã
¡ 2N (®

00

+ ¯
00

¡ °
00

)

K (2M ¡ K )
¡ 1

!

YSPEEF (K ) =
n
¡ 2N (®

00

+ ¯
00

¡ °
00

) ¡ K (2M ¡ K )

¢

"

log

Ã
¡ 2N (®

00

+ ¯
00

¡ °
00

)

K (2M ¡ K )

!

+ 1

#)

¢u

Ã
¡ 2N (®

00

+ ¯
00

¡ °
00

)

K (2M ¡ K )
¡ 1

!
 (27) 

with 

®00 = log

Ã
KY

i = 1

µi

!

;®00 = log

Ã
KY

i = 1

µi

!

;                       (28) 

¯00 = (M ¡ K ) log

Ã
1

M ¡ K

MX

i = K + 1

µi

!

;¯00 = (M ¡ K ) log

Ã
1

M ¡ K

MX

i = K + 1

µi

!

;       (29) 

° 00 = M log

Ã
Tr (R̂ 0)

M

!

:° 00 = M log

Ã
Tr (R̂ 0)

M

!

:                     (30) 

The various algorithms estimating the number of the 

potential SUs can be obtained as follows: 

K̂ EEF = argmax
K = 0;1;¢¢¢;M ¡ 1

YEEF (K );K̂ EEF = argmax
K = 0;1;¢¢¢;M ¡ 1

YEEF (K );               (31) 

K̂ GEEF = argmax
K = 0;1;¢¢¢;M ¡ 1

YGEEF (K );K̂ GEEF = argmax
K = 0;1;¢¢¢;M ¡ 1

YGEEF (K );            (32) 

K̂ SPEEF = argmax
K = 0;1;¢¢¢;min(M ;N )¡ 1

YSPEEF (K ):K̂ SPEEF = argmax
K = 0;1;¢¢¢;min(M ;N )¡ 1

YSPEEF (K ):     (33) 

B. Global Test Statistics of the 
Selected Users  
The ideal covariance matrix of the PU signal R xR x is 

usually unknown whereas the sample covariance matrix R̂xR̂x  

under the condition of limited samples is the only data we 

can utilize. After the number of SUs is estimated, the 

spectrum observations need to be fused into GTS at the FC. 

Firstly, we compute the received signal sample 

autocorrelation matrix R̂xR̂x  with the set of eigenvalues 

¸ = f ¸ 1; ¸ 2; ¢¢¢; ¸ M g¸ = f ¸ 1; ¸ 2; ¢¢¢; ¸ M g . Assuming R̂xR̂x  with the set of 

eigenvalues ¸̧ , we request a descending order of the 

eigenvalues to obtain the 

ensemble ^̧ =
n

^̧
j 1

; ^̧
j 2

; ¢¢¢; ^̧
j M

o
^̧ =

n
^̧

j 1
; ^̧

j 2
; ¢¢¢; ^̧

j M

o
. The number 

f j 1; j 2; ¢¢¢; j M gf j 1; j 2; ¢¢¢; j M g is a permutation of the original SU indices 

f 1; 2; :::; M gf 1; 2; :::; M g. With an estimated K̂̂K  in previous stage, we 

need to extract the K̂̂K  maximum eigenvalues corresponding 

to the SUs receiving strong PU signals. The process is 

completed by selecting the SU indices to form the index 

ensemble Q̂̂Q : 

< = max
K̂

f ¸ g = max
K̂

n
^̧

o
=

n
^̧

j 1
; ^̧

j 2
; ¢¢¢; ^̧

j K̂

o

) Q̂ =
©

j 1; j 2; ¢¢¢; j K̂

ª

< = max
K̂

f ¸ g = max
K̂

n
^̧

o
=

n
^̧

j 1
; ^̧

j 2
; ¢¢¢; ^̧

j K̂

o

) Q̂ =
©

j 1; j 2; ¢¢¢; j K̂

ª
 (34) 

In order to combine the spectrum data from the selected 

SUs and generate the GTS, we form two vectors of ¹¹  and ¹̂̂¹  

which select the SUs that will contribute in GTS. ¹¹  and ¹̂̂¹  

can be set according to the elements of Q̂̂Q : 

¹ (i ) =

(
1; i 2 Q̂

0; else
¹ (i ) =

(
1; i 2 Q̂

0; else
                           (35) 

In [6], OCED and BCED schemes were proposed based 

on different implementation conditions. Assuming R xR x is 

ideally known, OCED uses the optimal combining 

matrix B = diag(¯1)B = diag(¯1) , where ¯ 1¯ 1  is the eigenvector 

corresponding to the maximum eigenvalue of R xR x . BCED 

does not require any information (totally blind) and estimate 

the eigenvector ^̄
1

^̄
1  only based on the received signal 

samples. Both of OCED and BCED actually only consider 

the SU with the maximum received PU signal power and 

hence treat the maximum eigenvalue as the GTS. In 

previous stage, we have estimated that there are actually K̂̂K  

SUs that may contribute more in generating the GTS, 

therefore, we stack the optimal combining matrices from all 

SUs and obtain the matrices as Á =
h
B T

1 ; B T
2 ; ¢¢¢; B T

M

i T

Á =
h
B T

1 ; B T
2 ; ¢¢¢; B T

M

i T

 

and Á̂ =
h
B̂

T

1 ; B̂
T

2 ; ¢¢¢; B̂
T

M

i T

;Á̂ =
h
B̂

T

1 ; B̂
T

2 ; ¢¢¢; B̂
T

M

i T

; , where B m = diag(¯m )B m = diag(¯m ) 

and B̂ m = diag( ^̄
m )B̂ m = diag( ^̄
m ) with ¯ m¯ m  being the eigenvector of R xR x  

corresponding to ¸ m¸ m  and ^̄
m

^̄
m  the eigenvector of R̂xR̂x  

corresponding to ^̧m
^̧

m . 

Subsequently, using the selecting vectors ¹¹  and ¹̂̂¹ , we 

can develop the GTS of optimal user selection combined 

energy (OUSCE) and blind user selection combined energy 

(BCUSE) detection algorithms as: 
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TOUSCE (N ) = 1
N

P N
n= 1 kº (n)k

2
;TOUSCE (N ) = 1

N

P N
n= 1 kº (n)k

2
;             (36) 

TBUSCE (N ) = 1
N

P N
n= 1 kº̂ (n)k

2
;TBUSCE (N ) = 1

N

P N
n= 1 kº̂ (n)k

2
;              (37) 

where 

º (n) = 1

K̂
¹ ¢Á ¢x(n) = 1

K̂

P K̂
i = 1 V i x(n);º (n) = 1

K̂
¹ ¢Á ¢x(n) = 1

K̂

P K̂
i = 1 V i x(n);      (38) 

º̂ (n) = 1

K̂
¹̂ ¢Á̂ ¢x(n) = 1

K̂

P K̂
i = 1 V̂ i x(n):º̂ (n) = 1

K̂
¹̂ ¢Á̂ ¢x(n) = 1

K̂

P K̂
i = 1 V̂ i x(n):      (39) 

To make the final global decision in cooperative sensing, the 

GTS in (36) is compared with its threshold which is 

predefined by the desired false alarm probability before the 

sensing operation begins. 

IV. Simulation and Analyses 
In order to verify the performance of the proposed 

cooperative sensing algorithms, we carried out Monte Carlo 

computer simulations in Matlab, setting M = 12, K = 6, and 

the desired false-alarm probability 0.1. Each simulation runs 

over 5000 loops. According to different conditions of 

equation (38) and (39), performance evaluation of EEF, 

GEEF, and SPEEF based USCE cooperative sensing 

algorithms can be divided into two classes, namely the 

OUSCE class under the ideal condition of already known 

covariance matrix R sR s and the BUSCE class under practical 

condition that no a priori information is available. The 

spectrum sensing performance is usually measured in terms 

of detection probability and falsealarm probability.  

We set the number of samples N = 1000 and the SNR 
range as [-18dB,-4dB]. Fig.1 represents the detection 
probability of EEF, GEEF and SPEEF based OUSCE 
algorithms along with BCED, OCED and ED algorithms. In 
Fig.1, we notice that EEF, GEEF and SPEEF based OUSCE 
cooperative algorithms yield higher detection probability 
than the traditional OCED algorithm. Furthermore, SPEEF 
obtains similar performance with EEF and GEEF, based on 
lower complexity. Fig.2 depicts the detection probability of 
EEF, GEEF and SPEEF based BUSCE algorithms along 
with BCED, OCED and ED algorithms. According to Fig.2, 
it is easy to find that detection performance of EEF, GEEF 
and SPEEF based BUSCE algorithms, which require no a 
priori information, have obvious performance improvement 
in comparison with the original BCED algorithm, and is 
approaching the ED algorithm for which the noise power is 
already known. 
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Fig. 1. Detection probability of OUSCE and other algorithms. 
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Fig. 2. Detection probability of BUSCE and other algorithms. 

V. Conclusion 
In this paper, user selection based cooperative sensing 

algorithms are proposed. Based on the criteria of EEF, 

GEEF and SPEEF algorithms are developed, to estimate the 

optimal number of users for generating GTS, and then 

compared with the conventional cooperative sensing 

methods, namely the OCED and BCED algorithms. 

Simulation results show that without any a prior 

information, the user selection based BUSCE schemes have 

better performance than the original BCED method and 

approach the ED performance. As for being compared with 

the OCED method, the proposed OUSCE schemes also 

outperform among them. Therefore, the proposed EEF 

criterion based user selection schemes can be effectively 

applied in practice as an easy-to-implement scheme. 

References 

 
[1] Haykin S, “Cognitive radio: brain empowered wireless 

communication,” IEEE Journal on Selected Areas in 
Communications, vol. 23, no. 2,pp. 201-220, Feb. 2005. 

[2] Cabric D, Tkachenko A, Brodersen RW, “Spectrum sensing 
measurements of pilot, energy, and collaborative detection ,” IEEE. 
Military Communication Conf. (MILCOM). Washington: IEEE Press. 
2006:1-7. 

[3] L. S. Cardoso, M. Debbah and P. Bianchi “Cooperative Spectrum 
Sensing Using Random Matrix Theory,” March 2008. 

[4] Y. Zeng, C. L. Koh and Y. C. Liang “Maximum Eigenvalue 
Detection: Theoryand Application,” IEEE International Conference 
on Communications, pp. 4160 - 4164, May 2008. 

[5] Y. Zeng, Y.C. Liang, “Eigenvalue-based spectrum sensing algorithms 
for cognitive radio ,” IEEE Trans. on Communications, vol.57, no. 6, 
pp. 1784-1793, June 2009. 

[6] Y. Zeng, Y. Liang, and R. Zhang, “Blindly Combined Energy 
Detection for Spectrum Sensing in Cognitive Radio,” IEEE Signal 
Processing Letter, vol. 15, pp. 649-652, 2008. 

[7] Hhaimin and Cangyan, “Computional Intelligence and Software 
Engineering,” International Conference on, pp. 1-4, Dec, 2009. 

[8] R. Wang and M. Tao, “Blind Spectrum Sensing by Information 
Theoretic Criteria for Cognitive Radios,” IEEE Trans. on Vehicular 
Technology, vol.59, no. 8, pp. 3806-3817, October 2010. 

[9] STEVEN KAY, “Exponentially Embedded FamiliesCNew 
Approaches to Model Order Estimation,” IEEE TRANSACTIONS 
ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. 41, no. 1, 
pp. 333-345, Jan 2005. 

[10] SHEN Bin, YU Jun, HUANG Qiong and CHEN Qian-bin, “EEF 
Criterion Based Wideband Spectrum Sensing Used in Cognitive 
adio,” Journal of Beijing University of Posts and 
Telecommunications, vol.37, no. 6, pp. 116-119, 2014. 


