
 

21 

 

International Journal of Artificial Intelligence and Neural Networks 
                              Volume 6 : Issue 1       [ISSN 2250-3749] 

                                                                                       Publication Date : 31 August,  2016 
 

Reconstruction of Gene Regulatory Network from 

Gene Perturbation Data, Current Methods and 

Problems   
 Winddy, Sharifallilah, Ali and Saifulaman 

 
Abstract—The inference of regulators is the core factor in 

interpreting the actual regulatory conditions in gene regulatory 

networks (GRNs). Various methods have been developed to 

reconstruct GRNs with the motivation of improving the 

accuracy and scalability of network inference. Thus, this study 

will brief the structure of GRNs, discuss current methods of 

GRNs reconstruction and problems when dealing with gene 

perturbation data.  Most of the information gathered from 

bioinformatics and system biology literature. At the end of the 

study several of GRNs reconstruction methods will be reviewed 

and identified their problem when dealing with gene 

perturbation data. This study is useful as a reference to develop 

more accurate GRNs inference methods particular for gene 

perturbation data. 
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I.  Introduction 
Reconstruction of gene regulatory networks (GRNs) is 

the core factor in interpreting the actual regulatory 
conditions in GRNs [1]. It helps us to understand the 
working mechanisms of the cell in pathophysiological 
conditions [2]. GRNs describe control at the gene expression 
level and could be inferred from microRNAs (miRNAs), 
regulatory motifs, gene expression profiles and interactions 
between regulatory targets [3]. This provides a clearer 
blueprint on the relationship between the genes that affect 
the expression of other genes and adequately describing 
these effects [4]. The importance of gene interaction 
research studies has provided several useful applications 
such as the identification and discovery of potential targets 
for therapeutic intervention in diseases such as cancer [5]. 
Thus, a number of techniques have been proposed for GRNs 
reconstruction. Here we will first brief the structure of GRN, 
discuss the current methods for GRNs reconstruction, and 
present some problems when dealing with gene perturbation 
data. 
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II. Structure of Gene Regulation 
Network (GRN)  

GRN is a model in which nodes corresponding to gene-
activities and can be represented in mixed graph,   
        over a set  of nodes, with ordered pairs  , the 
directed edges and unordered pairs  , the indirected edges. 
A directed edge     from    to    is present if a causal effect 

run from node    to    and there exist no nodes or subsets of 

nodes in   that are intermediating the causal influence (it 
may be mediated by hidden variables, i.e. variables not in 
 ). An indirected edges     between nodes    to    is present 

if gene-activities    and    are associated due to 

confounding, and there exist no nodes or subsets of nodes in 
  that explain that association (it is caused by a variable 
hidden to  ). 

The nodes in GRNs structure representing the genes, 
proteins, metabolites, their complexes or even modules 
while the edges represent direct or indirect interactions 
between nodes. Proteins and metabolites appear as hidden 
variables and GRNs are inferred only from gene expression 
data as observable variables. These hidden variables can 
model unobserved effects that cannot be measured. Fig. 1 
presents the projection of interactions from the space of 
metabolites and proteins in genes space. Dashed lines 
represent gene interactions and the full lines represent the 
interactions among genes, proteins, metabolites and their 
complexes [6], [7]. 

 

Figure 1. Projection of GRN in different spaces [7]. 
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A gene may directly influence the activity of other target 
gene or gene product. Influence may be indirect by coding a 
transcription factor (TF) that in turn regulates another gene. 
A possible causal relationship in GRN is shown in Fig. 2. 
Apparently, four different types of causal relationship may 
be possible in a living cell. Based on the above figure we 
can derive the following causal relationship [8], [9].  

 A gene can enhance the activity of more than one 
gene (relationship between A, B, C, and D). 

 A gene’s activity may be influenced by more than 
one gene (relationship between B, D, and F). Often 
F is referred as Collider [9], [10]. 

 Gene can also influence the activity of itself (node 
B). 

 A gene may inhibit the activity of another gene (D 
inhibits E). Inhibition or negative regulation may 
also follow above three relationships, i.e., many to 
one, one-to-many, and self. 

 

Figure 2. Possible causal dependency in GRN graph [9]. 

III. Algorithms for 
Reconstruction of GRN   

Recently, various methods have been developed to 
reconstruct GRNs by producing hypotheses about the 
presence or absence of interactions among genes, 
hypotheses that can later be tested by laboratory experiments 
[4], [11]. In general, these GRNs reconstruction methods fall 
into two categories, namely model-based methods and 
machine learning-based methods [12], [13]. For model-
based methods, chemical reaction of transcription and 
translation, as well as other cellular processes are described 
as linear or nonlinear differential equations, in which the 
parameters represent the regulation strengths of the 
regulators. Among the algorithms in this category include 
multiple linear regression [14], singular value 
decomposition method [12], [15]–[18], network component 
analysis [19], structural equation model (SEM) [20], sparse 
vector autoregressive [19] and linear programming. Adding 
to the list of methods is hybrid method [21]–[24], in which 
researchers have developed a novel method by incorporating 
more than one method.  

Regression analysis widely used for prediction and 
forecasting, where its use has substantial overlap with the 
field of machine learning [25]. Multiple regression analysis 

is a very advanced statistical tool and it is extremely 
powerful when you are trying to develop a ―model‖ for 
predicting a wide variety of outcomes [26]. Since the nature 
of GRNs that consists of simultaneous observation and 
analysis of more than one outcome variable [13], multiple 
regression analysis wise choice to reconstruct GRNs. There 
are a number of methods in this category, such as Multiple 
Linear Regression [27], Principle Component Regression 
[28], Partial Least Squares [29], Least Absolute Shrinkage 
[1] and Selection Operator (LASSO) [30] and Canonical 
Correlation Analysis [31]. While the linear regression model 
consists of a deterministic part and a random part, generally 
defined as 

              (1) 

The deterministic portion of the model, 

                (2) 

defines as, for any value of the independent variable,  , the 
population mean of the dependent or response variable,  , is 
described by the straight-line function        . The linear 
regression-based method developed by [20] performs better 
in terms of power of detection, but requires a future work as 
the false discovery rate decrease in high-noise context, and 
apply new strategies to handle large-size gene networks. 

Structural equation model (SEM) also produces results 
comparable to the results from any that regression 
techniques. For the reason, SEM has been applied frequently 
in the reconstruction of GRNs [13], [32]–[35]. Among the 
favoured position of using SEMs are allowing feedback 
loops, differentiating direct relations from indirect relations 
[13], able to correct for measurement error and falsifiable 
(able to be proved if the SEM model is wrong) . Maximum 
Likelihood (ML) is the method to estimate the parameters in 
SEM. It works iteratively to find the best solution by 
searching through solutions and testing them until it finds 
the best one as applied in [36]. 

For the machine learning-based methods, the network is 
inferred by measuring the dependencies or causalities 
between transcriptional factors (TFs) and target genes. 
Among methods fall in this category include the partial 
correlation coefficient (PCC) [37], Bayesian network [38], 
dynamic Bayesian network [39], Boolean network [40], 
probabilistic Boolean network [41], Ordinary differential 
Equations [42], mutual information (MI) [43], graph theory 
[44] and neural network [45]. Besides that, numerous 
methods for GRNs reconstruction are proposed, such as 
Collateral-Fuzzy Gene Regulatory Network Reconstruction 
(CF-GeNe) [46]. The detail descriptions including the 
advantages and disadvantages of each method reviewed in 
[6], [47]. 

Neural network was inspired by animals' central nervous 
systems. It is a flexible statistical method capable of 
recognizing input patterns, and modelling any functional 
relationships and data structure [47], [48]. For the reason, 
this method among the most popular used in GRNs 
reconstruction, especially the recurrent neural network 
(RNN) [17], [49], [50]. It is consists of feedback 
connections and dynamic memory units [17], [49], [51], 
[52]. The basic concept RNN, each node of the GRN 
represents a particular gene, and the wiring between the 
nodes defines as regulatory interactions. However, RNN is 
sometimes restricted in performance by the limited number 
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of samples (or time points) in DNA microarray experiments; 
their number generally being smaller than the number of 
attributes (or the parameters) to be estimated [53].  

Another the most popular used method in GRNs 
reconstruction is the correlation based approaches such as 
Mutual Information (MI). MI proposed to extract genetic 
networks [54] by computing MI for all gene pairs in a 
microarray dataset and infer that two genes are biologically 
related if their MI is above a certain threshold [55]. The MI 
of discrete random variables   and   is defined as  

        ∑          
      

                            (3) 

where   ,    are the marginal probability mass functions of 
  and  , respectively, and   is the joint probability mass 
function of      . Methods such as ARACNE [55], CLR 
[56], MRNET [57] and PCA-CMI [58] have succeeded in 
inferring the GRNs using MI-based methods [59]. Even 
though MI works well with co-expressed or positively 
regulated patterns, it fails in handling gene profile with 
negative and mixed patterns [54]. Moreover, MI is incapable 
of detecting edges directionality [59], therefore it  unable to 
identify the relationships accurately [54] particularly when 
applied to a limited number of samples [20]. Despite of the 
limitations, MI is further improved by using Conditional 
Mutual Information (CMI) which measures conditional 
dependency between two variables (genes) given other 
gene(s) [58]. Although the CMI is able to identify the direct 
regulations, it generally underestimates the regulation 
strength. To overcome the problems, a novel concept, 
namely conditional mutual inclusive information (CMI2) 
proposed by [31], to describe the regulations between genes.  

Despite the advantages of CMI2, there is still room to 
improve it. Firstly, similar to PCA-CMI, CMI2 cannot 
directly infer edge directionality, which is also a general 
problem of many other methods, especially for those not 
working on time series data [55], [31]. Secondly, it is still a 
challenge task to select the conditional genes in an 
optimization way. Recently a method incorporated Gaussian 
Noise Model and Pearson Correlation Coefficient has been 
proposed by [13]. This method has demonstrated the ability 
to (1) predict the presence of regulatory interactions between 
genes, (2) their directionality and (3) their states (activation 
or suppression). However, this prediction method generated 
high false positive values because the indirect regulations 
have been wrongly predicted as true relationships. The list 
of GRN inference methods can be seen in Table 1. 

TABLE 1. LIST OF ALGORITHM FOR GRNs RECONSTRUCTION 

Categories Methods References  

1. Model-

based 

Multiple linear regression  

Singular value decomposition  

Network component analysis  
Structural equation model (SEM)  

Sparse autoregressive vector  
Linear programming 

Hybrid method 

[14] 

[15]–[18] 

[19] 
[20] 

[19] 
[60] 

[21]–[24] 

2. Machine 

Learning-
based 

Partial correlation coefficient (PCC)  

Bayesian network 
Dynamic Bayesian network  

Boolean network  

Probabilistic Boolean network  
Ordinary differential Equations  

Mutual information (MI)  

Graph theory 
Neural network  

[37] 

[38] 
[39] 

[40] 

[41] 
[42] 

[43] 

[44] 
[45] 

Categories Methods References  

Collateral-Fuzzy Gene Regulatory 

Network Reconstruction (CF-GeNe)  

 

[46] 

 

IV. Gene Perturbation Data for 
Reconstruction of GRN  

Gene expression data are crucial for GRN construction. 
Gene expression data allow biologists to observe the 
expression level of genes on a large scale [61]. There are 
two types of gene expression data used for GRN 
construction: time series and gene perturbation experiments. 
Time series expression data enable biologists to investigate 
the temporal pattern in biological networks. While, data 
obtained from experiments that gene perturbation by 
knockouts or RNA interference contain useful information 
for addressing the GRN reconstruction problem [33] 
because it provides information on interactions direction. 

However, several factors have impeded the accuracy 
GRNs reconstruction using gene perturbation data. First, it is 
needed to identify the two important parameters that are 
affected by noise: (1) the unaffected genes and (2) the wild-
type strain values, which are more difficult to identify when 
a larger number of genes are involved. Second, though past 
research has been conducted in reconstructing GRN, only a 
few researchers applied their methods to real experimental 
GRN datasets, as an addition to synthetic data. Third, most 
previous research only focuses on GRN prediction, only a 
few attentions given to determining the directionality of the 
genes. Finally, many high false positive (FP) values are 
generated using the current GRNs reconstruction methods 
because the indirect regulations have been incorrectly 
predicted as true relationships.   

V. Conclusion   
This study discusses several of GRNs reconstruction 

methods and identified their problem when dealing with 
gene perturbation data. Since the main motivation of 
developing GRNs reconstruction methods to improve its 
accuracy and scalability, this study useful as a reference to 
develop more accurate GRNs reconstruction methods 
particular when dealing with gene perturbation data. In 
future work we are going to develop a method of GRNs 
reconstruction by attentions given to determining the 
directionality of the genes and reduce the high false positive 
(FP) values are generated using real gene perturbation 
experimental datasets. The experiments that assess the stated 
features of our method will be covered in our future research 
studies. 
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