

11

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 2 [ISSN 2250-3757]

Publication Date : 31 August, 2016

Dynamic Analysis for Security Testing of WEB

Based Applications Using Agent Technology
[Muhammad Imran, Fathy Eassa, and Kamal Jambi]

Abstract—This is the second part of two papers covering the

topic of security testing of WEB based applications using agent

technology that covers dynamic analysis. This research covers

an integrated dynamic analysis technique and tool for detecting

and preventing such security vulnerabilities in web

applications. It is based on agent technology and written in

Java. The dynamic analysis starts for tracking the propagation

of user input in the program which helps to detect the

vulnerabilities in the source code. This technique is extendable

to the vulnerabilities in the similar class and source codes

written in other object oriented languages. At the end, this

paper presents a Java Web Application Security Tester

(JWAST) which is an implementation of the proposed

technique. Also a comparison of JWAST with other tools is

presented.

Keywords—Dynamic Analysis, Security Testing, WEB

Based Applications, Agent Technology, Software Engineering

I. Introduction
Static analysis can be defined as “the analysis of a

computer software which is performed without actually
executing the software under testing” [1]. The program’s
text is statically examined in this analysis and a possibility
of applying the static analysis on the compiled form of the
program also exists but decoding can be a problem in this
case. Manual auditing and Code Review might also fall
under the category of static analysis but this remains
ineffective until and unless this activity is automated making
it faster and reliable.

Runtime monitoring falls under the category of dynamic
analysis and this refers to monitoring the program under test
during its execution. Further, different techniques exist for
achieving the runtime monitoring. However, the techniques
of runtime monitoring are more feasible for preventing the
runtime attacks rather than their detection. So, it cannot be
used for detecting the location of vulnerabilities but it can
help in preventing the vulnerability to be exploited during
the program execution.

Similarly, another set of techniques that also falls under
the category of dynamic analysis is known as penetration
testing [2]. In penetration testing the system is considered a
black box. A set of input variables, whose values are set as
some malicious inputs, is composed manually or
automatically and is given to the program under test. And
finally the behavior of the program as a result of that input is
evaluated. However, this technique depends on the set of
input values that are given and setting these input requires a
significant security knowledge.

Muhammad Imran, Fathy Eassa, and Kamal Jambi

Computer Science Department, King Abdulaziz University
Jeddah, Saudi Arabia.

This paper starts with an introduction of dynamic
analysis followed by a detailed section of the proposed agent
based security testing tool called Java Web Application
Security Tester (JWAST). At the end there is a coverage
comparison of JWAST with other tools.

II. Dynamic Analysis
In the literature, several dynamic data flow analyses

have been proposed, researched and used in the software
security solutions and tools. In a dynamic taint analysis, the
program is executed and those computations and method
calls are searched which are affected the un-validated user
input. Different works targeting the security vulnerabilities
problem follows this approach. One of these works include a
dynamic taint analysis approach by Haldar [3]. This
approach targets the Java web applications and looks for
XSS, Cookies Poisoning and Command injection attacks at
the runtime.

One of the approaches [4], prevents the SQL injection
attacks during the runtime by building a parse tree of the
SQL statements before including the user input and after
including the user input in the SQL statement and
comparing both of them. By comparing the before and after
user input parse trees, it is decided whether the structure of
the statement is same and attack is attempted or not. One
other similar approach based on the parse trees building at
the runtime is used in the tool called CANDID [5]. It uses its
runtime analysis for preventing the SQL injection attacks.
The attacks are prevented by recording the sequence of SQL
commands and replacing the inputs in these commands with
1s and then building the parse tree. If the parse tree differs
from the original parse tree, the query is preventing from
execution.

An approach from Boyd [6] uses a functionality
provided by Java for preventing the SQL injection attacks.
They use the PreparedStatement API available in Java and
forces the SQL queries to be containing only string or
numeric literals. Also the SQL keywords are randomized, so
that they could not be guessed by the users however, this is
the limitation in this approach also, as it would be
compromised it user guesses the randomization key
successfully.

Another dynamic taint analysis approach by Chang et al.
[7] is targets the C programs and looks for the command
injection attacks and format string attacks. In this approach,
a data flow analysis is integrated at the compile time using a
small library that tracks the taints throughout the program
during execution for detecting the vulnerabilities that are
caused due to inputting the untrusted data.

The dynamic taint analysis is a common approach to
follow for preventing the attacks at the runtime time. Several
works which include [8] and [9] used this form of analysis.
The dynamic taint analysis is actually influenced by the
Perl’s taint mode. Also, one other way to dynamically

12

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 2 [ISSN 2250-3757]

Publication Date : 31 August, 2016

prevent the attacks from happening is the use of wrappers
[10]. The wrapper to the program will filter out the
malicious input values which will eventually prevent
malicious input to reach the actual program and the security
vulnerabilities would not be exploited.

The dynamic taint analysis is not only used for Java, but
Salvatore [11] also used it for tracking the taints information
at the character level in the PHP programs. In this proposed
technique, the SQL query is tokenized and checked for the
existence of any tainted values in it. Similarly, Wasp [12]
uses tainting technique for Java by providing the bytecode
instrumentor and tainting the strings.

A. Integration of Static and Dynamic
Analysis
There are pros and cons for both the static and dynamic

analysis techniques where the static analysis is able to do
high code coverage with low accuracy and dynamic analysis
is opposite to that. To neutralize their cons and maximize
their pros, the integration of these two techniques has been
the subject of this project and similarly several other
researches in the past have used this concept in their
solutions. A very simple example for the integrated
technique is the technique used to prevent the XSS attacks
on the client side, by combining the static and dynamic
analysis in a web browser [13].

The work by Lucca et al. [14] is based on identifying
Cross-Site Scripting vulnerabilities in web applications. It
presents and approach which is combination of Static and
Dynamic analysis where static analysis is supposed to detect
potential vulnerabilities and then the dynamic analysis will
help in detecting the actual vulnerabilities. To prevent the
XSS attack one of the recommended solution is to disable
the scripting languages in the bowser however this problem
should be addressed by the developers instead on end users.
Another option suggests to use the input validation functions
after each input but this will result in an overhead as all the
inputs might not affect the output data which will not cause
XSS. This work proposed an approach to analyze only the
input data which affects the output data for which it exploits
both static and dynamic analysis. They used some predicates
to define some rules by applying them to the Control Flow
Graph (CFG) of the server page for assessing its
vulnerability. By using the predicates in some conditions the
vulnerabilities are characterized as Potentially Vulnerable
(PV), Vulnerable with respect to v (V) and not vulnerable
(NV). For the dynamic analysis, output of the static analysis
is exploited by submitting only those pages which were
found vulnerable in the static analysis. For the dynamic
analysis the author defines a set of XSS attack strings and
for each string it executes each vulnerable server page by
giving the attack string as input to each vulnerable field of
that page, after which the attack consequences are checked.
To test the effects of the attack in the dynamic analysis it
might be difficult when the output/malicious data is not
provided to the user but stored in the database. Thus to
observe the effects of XSS WATT (Web Application
Testing Tool) has been used which takes the input from the
XSS test case generator module and the results of test case
execution are checked to assess the success of the attack.

An integrated technique is used in a tool Saner [15]. It
detects the sanitization routines in a program with a static

analyzer based on the already existing tool called Pixy [49].
After the static analysis is done, the dynamic analysis is
used making the tool more sound and complete by checking
if the detected sanitization is correct and complete.

Amnesia [16] integrates the static and dynamic analysis
and used to prevent the SQL injection attacks at the runtime.
The static analysis is performed in this tool by building a
model of valid SQL queries and then in the dynamic
analysis the queries generated at the run time are checked
against the statically built model that whether these runtime
queries comply with the statically built model.

One of the integrated techniques is proposed for
detecting the security vulnerabilities in the PHP based web
applications. This technique is used by a tool known as
WebSSARI [17]. The static analysis of WebSSARI
constructs the Abstract Syntax Tree, Control Flow Graph
and uses then to track the state of variable in the program
with the help of a symbol table. The path between the taint
values and dangerous functions is identified and the next
part is done for the runtime prevention and detection of
attacks. Specific instrumentation code is inserted based on
the static analysis results and this code performs checks and
prevents the security attacks during the application runtime

III. JAVA Web Application
Security Tester

This section covers the architecture of our agent based
security testing tool JWAST.

A. The Testing Methodology
This section presents the technique built for the purpose

of security testing of web based applications. As shown in
[1] various security testing techniques can be used to test the
software programs for known or unknown security
vulnerabilities.

JWAST is a static and dynamic testing tool which is
based on integrated static and dynamic analysis technique.
The basic idea behind this technique is the use of static
analysis technique and integrating it with a dynamic analysis
technique to increase the detection capability of our tool and
also enable our tool to prevent the attacks from happening at
the run time [1].

B. Dynamic Analysis Technique
The tool starts by the task of code analysis where static

analysis is performed first. The static analysis operates on
Java source code files where it analyzes every file to
determine specified vulnerabilities. The vulnerabilities are
specified by the security rules which behave as the security
knowledge for static analysis technique [1]. Once the static
analysis is completed, the next step is to perform the
dynamic analysis on the web application. The dynamic
analysis carries out the testing process by the use of
instrumentation technique. The instrumentation approach is
based on the idea that, the attacks occurring due to the input
validation vulnerabilities can be handled by adding the
validation to the source code by determining of
instrumentation technique of the original source code with
the pre-defined instrumentation templates. Therefore, the
instrumentation code would perform the validation on the

13

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 2 [ISSN 2250-3757]

Publication Date : 31 August, 2016

Figure 1: Dynamic Analysis Agent Architecture

input given at the runtime, as a result of which the attacks
would be stopped from being carried out and also the
attempt for an attack can be reported during the web
application’s runtime.

To do this, an automated dynamic analyzer agent
generates the instrumentation code based on the
instrumentation templates that contains the specified
templates for each target vulnerability type. Later on, the
dynamic analyzer agent also inserts the generated
instrumentation code into the original web application code
automatically. For inserting the instrumentation code, the
locations are extracted from the results produced by the
static analyzer agent. As, the instrumented source code,
which is actually combination of the original source code
and the instrumentation code, is executed the runtime
attacks are prevented as well as reported to the user.

C. The Architecture
As in the previous section, we have presented the high

level architecture of our tool. This section presents the low
level architecture of our tool in details where each agent’s
architecture is presented and described in detail.

1) Dynamic Analysis Agent
Architecture

The dynamic analysis agent is responsible for carrying
out the dynamic part of our testing tool. Similar to other
analysis agents involved in the testing process, the dynamic
analysis agent also takes several inputs that are consumed by
different agents acting as sub agents for the dynamic
analysis agent.

The architecture diagram of the dynamic analysis agent
is shown in Fig. 1. The operations performed by the
dynamic analysis agent are described in the points below:

1. The list of vulnerabilities is given as an input, along
with the predefined instrumentation templates, to the
instrument code generation agent.

2. The instrument code generation agent generates
appropriate instrumentation code based on the
vulnerabilities information provided by the vulnerabilities
list. This information mainly includes the types of potential
vulnerabilities, the location of vulnerabilities in the source
code and the vulnerable method along with the vulnerable
parameter of that method.

3. The instrumentation code is passed on to the source
code instrumentor agent. This agent also takes the source
code of the web application under test and then instruments
that code by adding the instrumentation code at appropriate
locations.

4. The instrumented source code generated by the
source code instrumentor agent is given to the Java compiler
which compiles it and produces the bytecode.

5. Bytecode is taken as input by the Java Virtual
Machine (JVM), and machine code is produced, which
further goes through the execution phase.

When the web application which has already been
instrumented, runs during the execution, the runtime attacks
are detected, prevented and a list of these attacks is
generated as a final output of the tool.

D. Implementation and Testing

This section covers the implementation details followed

by the testing that we have performed on our security testing

tool JWAST.

2) General View
The implementation of the tool is done in the Java

language in the form of independent agent based

subsystems. All agents of JWAST are written in the Java

programming language and for developing, managing and

running the agents, JADE framework version 4.3.2 is used

as a middleware [1]. The implementation of the tool is done

in two phases based on the idea used in the proposed

integrated static and dynamic analysis technique. In the first

phase, the static analysis is implemented which further

consists of subsystems that interact with each other and take

the output of one or more subsystems as their input. In the

second phase of implementation the dynamic analysis has

been implemented based on the results and their format

produced during the static analysis. While implementing the

static and dynamic analysis modules, a specific mobile agent

framework is used.

3) Implementing Dynamic Analysis
For implementing any static code analysis technique, the

preprocessing (performing lexical analysis and parsing) is

14

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 2 [ISSN 2250-3757]

Publication Date : 31 August, 2016

Figure 2 : JWAST test case design diagram

TABLE I. COVERAGE COMPARISON OF JWAST WITH OTHER TOOLS

Vulnerabilities/Tools JWAST PMD Find Bugs RIPS SAFELI

SQL injection     

Cross-Site Scripting     

Http Response Splitting     

Path Traversal     

Command Injection     

XPath Injection     

LDAP Injection     

typically required and generally the manual construction of

lexical analyzer and parsers is rare [1]. Thus a single or a set

of tools, depending on the technique under development, are

used for automating the lexical analyzer and parser

construction.

Once the static analysis is completed and the

vulnerabilities along with all the details are produced as a

result, the dynamic analyzer agent takes control. The

implementation of the dynamic analysis is further divided

into two modules as in the JWAST architecture shown in

Fig. 1. The instrument code generation agent implements the

traversing and analysis logic. The traversing part

implements the logic for visiting the instrumentation

templates that are input to the dynamic analysis module.

This traversing is performed on the basis of analysis that

runs over each vulnerability to identify the vulnerability type

and extracts the required parameters like vulnerability

location in the source code. Once the vulnerability is

identified, the specific instrumentation template is selected

and instrumentation method from the source code

instrumentor agent is called where it is provided with the

instrumentation code and the source code where this is

instrumentation code is to be inserted. For instrumenting the

source code, the source code processor called Java

Instrumentation Engine (JIE) version 1.01 [18] , meant for

source code instrumentation, is used. “The Java

Instrumentation Engine (JIE) is a generic Java source code

processor which inserts instrumentation code at specified

locations in a given source code. In its basic mode of

operation, JIE receives a Java source file and

instrumentation instructions, and emits appropriately

transformed Java source code” [18]. Once the source code is

instrumented, it is converted to byte code by the Java

compiler and then into the machine code by the Java Virtual

Machine (JVM) and in the execution phase the

instrumentation code gets executed where the runtime

attacks are then detected and prevented.

There exist a number of tools that are meant for security

testing. Here, we present a coverage comparison of our tool

with some of the other tools built for the web application

security testing. Table 1 shows the difference in the

vulnerability coverage that exists between our tool and other

tools. As it shown in the table, our tool JWAST covers all

the listed vulnerabilities. JWAST is capable of detecting and

preventing the SQL injection, XSS, Http response splitting,

path traversal, command injection, XPath injection and

LDAP injection vulnerabilities and runtime attacks [1].

However, the other tools that we have compared with, cover

only few of these vulnerabilities where path traversal, XPath

injection and LDAP injection vulnerabilities and attacks can

only be detected using our tool, JWAST.

15

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 2 [ISSN 2250-3757]

Publication Date : 31 August, 2016

TABLE II. FEATURE COMPARISON OF JWAST WITH OTHER TOOLS

TABLE III. RESULTS OF TEST RUN ON JULIET TEST CASE VERSION 1.1.1 AND VERSION 1.2

Juliet Test

Case

Total Test

Cases
 Precision Accuracy Recall

Version 1.1.1 6330

True Positives 1250

0.13 0.6 0.2
False Positives 8421

True Negatives 18892

False Negatives 5062

Version 1.2 9731

True Positives 2008

0.4 0.8 0.2
False Positives 3180

True Negatives 40932

False Negatives 7723

There is a comparative study that we have made for our

tool with the other existing tools. In Table 2, we have shown

the differences in the implemented features of our tool with

other tools. This comparison shows that our tool has

contributed in terms of several improvements in the features

that current tools offer.

As it can be seen in the Table 2, JWAST differs in the

underlying technology, where we have introduced an agent

based security testing tool as compared to the other existing

tools which developed as a conventional desktop based tools

[1]. Also, the technique that we have introduced and used in

our tool is an integrated static and dynamic analysis based

technique which is in contrast to the other tools that use

either only static or only dynamic analysis techniques for the

testing. One other obvious advantage of our tool over the

other tools is the input format used for performing the

security testing, which is the source code instead of the

binaries or the bytecode. This enable the users to perform

the security testing even if the application is under

development and the bytecode or binaries are not available

yet.

4) Evaluation Results
For evaluating JWAST, we used tests suites provided by

Software Assurance Metrics And Tool Evaluation

(SAMATE) [19]. For the testing the functionality of

JWAST, we have used White-box and Black-box testing

techniques. In white box testing, internal code written in

every component was tested and it was checked that the

code written is efficient in utilizing the resources of the

system like memory, band width or the utilization of

input/output. In order to perform Black-box testing on the

tool, we prepared several formal test case pairs for each type

of the vulnerabilities. Each pair in the formal test cases

consisted of negative and positive tests where, a negative

test is to be performed on the non-vulnerable code and

positive test is to be run on the vulnerable code known in

advance. The test cases that we have run are designed for

different vulnerabilities and are according to the Fig. 2.

They provide several test suites for performing security tools

evaluation and we have used the Juliet Test Suite for Java

version 1.1.1 and Juliet Test Suite for Java version 1.2.

Table 3 shows the summary of the results that we have

obtained by running JWAST on the Juliet Test Suite version

1.1.1 and the Table 3 shows the results that are obtained by

the Juliet Test Suite version 1.2.

IV. Conclusion
In this research, the topic of security testing of WEB

based applications using agent technology that covers
dynamic analysis is covered. The tool is implemented in
Java as an agent based security tool for testing the web

Features/Tools JWAST PMD Find Bugs RIPS Dytan

Underlying

Technology
Agent Based

Conventional

Desktop Based

Conventional

Desktop Based

Conventional

Desktop Based
Desktop Based

Techniques Used

Static +

Dynamic

Analysis

Static Analysis Static Analysis Static Analysis
Dynamic

Analysis

Target Language JAVA JAVA JAVA PhP binaries

Input Format Source Code Source Code Byte Code Source Code x86 binaries

Extensibility Yes Yes Yes No Yes

16

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 2 [ISSN 2250-3757]

Publication Date : 31 August, 2016

based applications written in Java. We have conducted
several experiments to test the ability of JWAST to detect
input validation vulnerabilities. We designed and run several
positive and negative test cases for each type of
vulnerability in the input validation vulnerabilities class. The
results have shown that our tool detects and prevents the
input validation vulnerabilities and is sound with respect to
its rule base.

A comparison of JWAST with other existing tools
revealed that JWAST performs better than the other tools.
JWAST provides improved coverage in terms of support for
number and types of security vulnerabilities as compared to
the other tools. Also, the features that are provided by
JWAST are better than the other tools. Namely, the
underlying technology, the integrated testing technique and
the input format as a source code are the features where
JWAST takes an edge over other tools.

References

[1] M. Imran, F. Eassa, and K. Jambi, “Using Agent Technology for

Security Testing of WEB Based Applications”, (SEDE–2015). P. 3-
10, San Diego, California, USA, 2015.

[2] B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,”
IEEE Secur. Priv., vol. 3, no. 1, pp. 84–87, 2005.

[3] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for
Java,” in Computer Security Applications Conference, 21st Annual,
2005, p. 9–12.

[4] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using Parse Tree
Validation to Prevent SQL Injection Attacks,” in International
Workshop on Software Engineering and Middleware (SEM) at Joint
FSE and ESEC, 2005.

[5] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan,
“CANDID: preventing sql injection attacks using dynamic candidate
evaluations,” in Proceedings of the 14th ACM conference on
Computer and communications security, 2007, pp. 12–24.

[6] S. Boyd and A. D. Keromytis, “SQLrand: preventing SQL injection
attacks,” in Applied Cryptog- raphy and Network Security
Conference, 2004.

[7] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security
enforcement using dynamic data flow analysis,” in Proceedings of the
15th ACM conference on Computer and communications security,
2008, pp. 39–50.

[8] W. Xu, S. Bhatkar, and R. Sekar, “Practical Dynamic Taint Analysis
for Countering Input Validation Attacks on Web Applications”

Technical Report SECLAB-05-04, Department of Computer Science,
Stony Brook University, 2005, pp. 1–15.

[9] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on
commodity software”,
https://scholar.google.com/scholar?cluster=9428084648194964145&h
l=en&as_sdt=0,5, 2005.

[10] D. Scott and R. Sharp, “Abstracting application-level web security,”
in Proceedings of the 11th international conference on World Wide
Web, 2002, pp. 396–407.

[11] A. N. Salvatore, G. Doug, and G. David, “Automatically Hardening
Web Applications Using Precise Tainting”, Springer US, 2005.

[12] William G. J. Halfond Alessandro Orso and P. Manolios, “Using
Positive Tainting and Syntax-Aware Evaluation to Counter SQL
Injection Attacks,” in ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE 2006), 2006.

[13] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G.
Vigna, “Cross-Site Scripting Prevention with Dynamic Data Tainting
and Static Analysis”, Proc. of the Network and Distributed System
Security Symposium (NDSS’07), 2007.

[14] G. A. Di Lucca, A. R. Fasolino, M.Mastroianni, and P.Tramontana,
“Identifying Cross Site Scripting Vulnerabilities in Web
Applications”, Springer US, 2005.

[15] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, and C.
K. G. Vigna, “Saner: Composing Static and Dynamic Analysis to
Validate Sanitization in Web Applications,” IEEE Secur. Priv., 2008.

[16] Halfond, W. GJ, and A. Orso, “AMNESIA : Analysis and Monitoring
for NEutralizing SQL-Injection Attacks,” in 20th IEEE/ACM
international Conference on Automated software engineering, 2005.

[17] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo,
“Securing web application code by static analysis and runtime
protection,” Proc. 13th Conf. World Wide Web - WWW ’04, p. 40,
2004.

[18] E. Tromer, “Java Instrumentation Engine.” [Online]. Available:
http://cs.tau.ac.il/~tromer/jie/. [Accessed: 05-Feb-2014]

[19] NIST, “SAMATE.” [Online]. Available:
http://samate.nist.gov/Main_Page.html. [Accessed: 07-Feb-2014].

About Author (s):

Muhammad Imran received Master degree from king

Abdulaziz University (2014). His area of interest covers:

software engineering, and agent technology.

Fathy Eassa received Ph.D. from University of Colorado,

Boulder, U.S.A (1989). His area of interest covers:

software engineering, agent technology, and Big data.

Kamal Jambi received Ph.D. from Illinios Insitute of

Technology, Chicago, U.S.A (1991). His area of interest

covers: software engineering, agent technology, speech

recognition, image processing and OCR.

