International Journal of Civil and Structural Engineering Volume 3 : Issue 2 [ISSN 2372-3971]

Publication Date : 31 August, 2016

Environmental Index of Energy Demand in Buildings

Optimization of a Parametric Model

[Camporeale, Patricia Edith, Czajkowski, Jorge Daniel]

Abstract—This work is part of a research project about optimization of parametric bioclimatic design. We develop two bioclimatic indexes of heating and cooling for typical winter and summer days respectively, which are optimized by means of genetic algorithms (GA) [1]. The object is a high-rise building with multiple uses, located in a plot of urban land, according to Buenos Aires City Environmental Code [2]. The efficient envelope fulfils the Law of Thermal Conditioning in **Buildings for Buenos Aires City and IRAM Standards 11604** [3] and 11659/1-2 [4]. After parameterizing the building geometry, we introduce solar thermal loads, transmission loads and internal loads. We employ our own climatic data from the Laboratory: hourly solar radiation and temperature. Then, we run the program consecutive times in order to obtain a set of solutions, which have equivalent energy performance but different spatial configuration. We utilize a genetic algorithm (GA) to optimize the process [5].Based on the results, we can analyze which variables influence the energy performance of the alternatives. This tool proves to be effective to design and optimize architectural solutions for a high-rise building, while giving the designer more options than traditional design method. We verify the hypothesis of the incidence of envelope geometry on energy demand by means of these new indexes. The calculations of these new indexes-B_{heat} and B_{cool} -let us evaluate simultaneously both parameters, providing a common basis of comparison: 24-hour energy demand of typical winter and summer days. We can affirm that energy efficient design cannot let apart summer condition for our bioclimatic zone (humid temperate) IIIb (IRAM 11603) [6]. Nevertheless, the above mentioned law in Buenos Aires Province only requires a minimum Gheat (IRAM 11604), taking into account only winter condition. The same happens with IRAM Standard 11900 about energy efficiency labelling.electronic document is a "live" template. The various components of your paper [title, text, heads, etc.] are already defined on the style sheet, as illustrated by the portions given in this document. (Abstract)

Keywords-bioclimatic indexes- energy demand

Camporeale, Patricia Edith - Czajkowski, Jorge Daniel

Sustainable Architecture & Habitat Laboratory- Faculty of Architecture and Urbanism/ National University of La Plata. Argentina

I. Introduction

The architectural design has become a step isolated from the production process, because of the high complexity of the problems that involves this process and the specialization in the architectural production.

This tool helps the designer in the first steps of the project, when he takes decisions that will influence along the development, construction and lifespan of a building as well as on maintenance and operation costs.

In this case, we design a high-rise building with different uses. The building comprehends offices, housing and mixed use of both activities, divided in three volumes with different sizes. The areas, quantity of storeys and heights are shown below (Table I)

The urban plot is a 50m x 50m square, limited by streets on three sides. It looks onto the river in the East side. The bioclimatic zone is humid temperate. It is situated in the metropolitan area of Buenos Aires (IRAM 11603) (Fig. 1)

TABLE I.

	Building data				
Uses	N° storeys	Area/storey	StoreyHeight	Building height	
	и	m^2	т	т	
housing	10	300	2.75	27.5	
officies	20	250	2.75	55	
mixed	15	250	2.75	41.25	
Total area		11750			

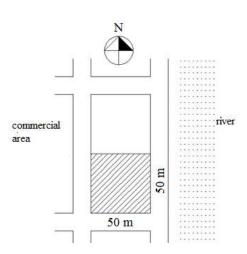


Figure 1. Plot relative location- Source: the authors

Publication Date : 31 August, 2016

п. Methodology

A. Data entry

External data —which determine the building shape and materiality— can be classified into two categories.

"Non- parametric" data do not admit variations, they are factual data:

- Plot dimensions, orientation and bioclimatic zone (climate)
- Building requirements: area and volume, according to the functional uses.
- Building code restrictions: building lines, maximum building area, volume and heights, urban indicators (land occupancy factor, total occupancy factor, etc.)

"Parametric" data are defined as ranges, they can vary and GA can affect them:

- Building geometry: location in the plot, envelope shape, glazing percentage, modules arrangement. They vary according to a range defined by the designer. GA optimizes this item.
- Envelope efficiency level (walls, windows and roofs). IRAM Standard 11605 [7] determines three levels: A, B y C, the designer determines it, but not less than B. GA does not affect it because it would always result the most efficient level but technical or economically unfeasible. We choose a level between A and B, considering that Law 13059/03- Energy Efficiency in Buildings [8] in the Buenos Aires Province requires at least, level B.
- Envelope thermal transmittance for the calculation of the G Volumetric Coefficient of Heat Losses (G_{heat}) (IRAM 11604) and G Volumetric Coefficient in Cooling (G_{cool}) (IRAM 11659-2).

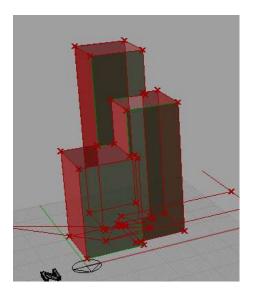


Figure 2. Building Shape- Source: the authors

B. Building Parameterization

We link data by math-logical operators. We use Rhinoceros, a 3D modeling program by NURBS [9], a parameter design plug-in, Grasshopper [10] and Galapagos, a GA for optimizing energy demand [11]. Figure 2 shows the layout of one solution.

We group together the façades by orientation and assign a percentage range to windows (IRAM Standard 11603):

- North Façade: 50%
- South Façade: 10%
- East Façade: 40%
- West Façade: 30%

c. Bioclimatic variables

We need to define the envelope transmittance to calculate thermal losses and gains. We consider walls, windows and roofs separately

D. Envelope Thermal Transmittance in Winter

The The range for winter in our bioclimatic zone is 0.38 W/m2K<=Kwall <=1.85 W/m2K, which corresponds to the three levels— A, B and C— determined by IRAM Standard 11605 [7]. GA does not affect this variable because, as the same as happens with glazing, it would tend to be the minimum allowed. In our experiment, we adopt K= 0.45 W/m2K, between A and B levels. Table 2 shows the wall layers Thermal conductivity for winter is the same as for summer, being maximum design temperature (MaxDT), 31.2°C for summer. IRAM Standard 11601 is equivalent to ISO 6946 to calculate thermal transmittances.

IRAM Standard 11507-4 [12] prescribes a thermal transmittance range between 2 y 4 W/m2K for windows. Following the same criteria as for walls, we adopt K= 2.61 W/m2K, which corresponds to PVC double glazing with 12mm single air chamber and 6mm transparent glasses (IRAM 11507-4).

The range for roofs comprehends from 0.32 to 1 W/m2K. We adopt K= 0.33 W/m2K, following the same criteria as we explained above. Level B, required by the mentioned law is 0.83 W/m2K. The different layers of the roof are detailed in Table 3.In the case of the perimeter, we adopt a thermal transmittance of K=1.03 W/m2K, corresponding to floor perimeter insulation (level B).

Comfort temperature for winter is 20°C (IRAM 11603)

E. Envelope Thermal Transmittance in Summer

Wall and roof composition satisfies summer conditions for IRAM Standard 11605. The required level (B) is 1.25 W/m2K for walls and 0.48 W/m2K. for windows. Glazing always fulfills IRAM Standard 11507-4

TABLE II.

Wall Thermal Tra	nsmittance	in Winter		
IRAM Standard 11601	К			
PROYECT	High-rise b			
ELEMENT	wall			
SEASON	winter	l heat flux		
BIOCLIMATIC ZONE	IIIb			
Comfort level according to IR	MinDT: 1,7 °C			
	width	1	R	
Layer	m	W/mK	m ² K/W	
Exterior surface resistance			0,04	
Outer plaster	0,03	1,16	0,03	
Expanded polystyrene □: 30 kg/m ³	0,05	0,03	1,56	
Vapour barrier				
Hollow ceramic brick	0,18		0,41	
Gypsum board	0,01	0,45	0,03	
Interior surface resistance			0,13	
TOTAL			2,2	
Element thermal transmittance W/m	0,45			
Thermal transmittance level B (IRA)	1			

F. Air changes per hour (n)

The quantity of air changes per hour is 2, according to Law 13059/03 DR 1030/10. As this value is too high for an efficient building, we adopt the analytical method (IRAM 11604) [14] which is specific for this case.

As the building height increases, the operable area of the windows must be reduced because wind speed grows exponentially. We consider suburban soil roughness to be 0.4 and average wind speed, 3.9 m/s at 10m high (IRAM 11603). Then we calculate the wind speed every 10m high [15]. With these values, we calculate the decrease of window joints length, as inversely proportional to wind speed increment.

In order to calculate the quantity of air changes, we utilize a weighted average, according to the air volume of each floor (1).

$$n = \frac{\sum n_n \times V_n}{v} \tag{1}$$

 n_n = number of air changes per hour for each sector, according to height

 $V_{n}\!\!=\!\!$ sectors in which the building is divided every 10m high

The obtained range is between 0.52 and 0.68 air changes/h for the different solutions.

Publication Date : 31 August, 2016

TABLE III.

Roof Thermal Tra	ansmittanc	e in winter		
IRAM Standard 11601	K			
PROYECT	High-rise building			
ELEMENT	roof			
SEASON	winter Ascend		ing heat flux	
BIOCLIMATIC ZONE	IIIb			
Comfort level according to IRAM 11605 MinDT			::1.7°C	
T	width	1	R	
Layer	т	W/mK	$m^2 K/W$	
Exterior surface resistance	0,005		0,04	
Asphalt membrane	0,05	58	0,00	
Polyurethane foam open cells	0,05	0,02	2,27	
Concrete layer	0,1	1,13	0,04	
Concrete subfloor	0,05	0,76	0,13	
Reinforced concrete compression layer	0,12	0,97	0,05	
Concrete slab with EPS	0,05	0,44	0,27	
Suspended ceiling		0,49	0,10	
Interior surface resistance			0,10	
TOTAL			3,01	
Element thermal transmittance W/m	0,33			
Thermal transmittance level B (IRA	0,83			

The GA considers a unique air volume, without separation for each floor. We divide the building every 10m to determine window joint lengths (Fig. 3).

G. Bioclimatic heating index (Bheat)

When calculating the volumetric heating coefficient (G_{heat}) (IRAM 11604), we consider an envelope without solar gains, only losses. There are calculation methods like the Solar Load Ratio [16] and the program Optimix [17], which add solar gains to the thermal balance of the building. In order to calculate solar gains for a typical winter day, we apply a similar method to the one employed in IRAM Standard 11659-2. This method considers thermal gains only at solar peak hour (Qcool). Instead, we consider thermal gains and losses for each hour, during a whole typical winter day (2).

$$B_{heat} = \frac{1}{v} \sum_{i=1}^{n=24} (Q'_{c} + Q'_{a} - Q_{is} - Q'_{o})$$
(2)

Q'c: envelope thermal losses by conduction (W). We consider each element: walls (w), glazing (g) and roofs (r) transmittances, their areas together with losses by floor perimeter in contact with ground. We calculate the product between this sum and the difference between the outdoor and the indoor comfort temperatures. We apply this calculation to each hour of a typical winter day that, in our case, is July, 1st. (3).

$$Q'_{c} = (K_{w}.A_{w} + K_{g}.A_{g} + K_{r}.A_{r} + Per.L_{f}).\sum_{i=1}^{n} \Delta t_{i}$$
(3)

International Journal of Civil and Structural Engineering Volume 3 : Issue 2 [ISSN 2372-3971]

Publication Date : 31 August, 2016

Figure 3. Division of the building according to air changes per hour Source: the authors

To calculate Δt , we consider average maximum and minimum sun-air temperatures and we obtain temperatures per hour Q'a: the product among thermal losses by infiltration, air volume and Δt (4):

$$Q'_{a} = 0.35. n_{exch} \sum_{i=1}^{m} V_{i} \sum_{i=1}^{n} \Delta t_{i}$$
 (4)

m= sectors of the building (1 to 5)

Vi= air volume of each sector

Q's: solar gains by glazing. To calculate the solar thermal load (W) we proceed as shown in (5).

$$Q'_{s} = Fs.Kg.\sum_{o \in O} Ag_{o} \cdot \sum_{i=1}^{n} Is_{oi}$$
⁽⁵⁾

Ago: glazing area (m2) per orientation

O= {North, South, East and West}

Kg: thermal transmittance (W/m2K)

Is: solar radiation on building façades and roofs. IRAM Standard 11659-1 [12] provides solar radiation on planes according to orientation and hour.

Fs: solar exposure 0.35 for DVH 6+12+6 glazing.

 Q'_{oSL} : thermal loads by internal gains: people, equipment, lighting (6). Occupancy depends on the different uses of the building. We consider 100% from 7PM to 8AM and 50% from 8AM to 7PM for housing. Offices have

occupancy of 100% from 9AM to 6PM and 0% from 6PM to 9AM. Mixed use building has 50% occupancy during the whole day.

Q'₀= thermal load by internal gains

 Q_{peopS} = thermal load by people and metabolic heat coefficient (sensible heat) (7):

$$Q'_{peops} = M_s \sum_{i=1}^n N_{peopsi}$$
(7)

Q_{lightS}= thermal load by lighting (8):

$$Q_{light} = \sum_{i=1}^{n} q_{light} \cdot A_i \cdot C_{T_i}$$
(8)

q_{light}= lighting internal gains

A= building area with lighting

Ti= thermal coefficient depending on the type of lighting

 Q_{equipS} = equipment thermal loads (9):

$$Q_{equip} = \sum_{i=1}^{n} q_{ligh_i} \cdot N_{light_i}$$
(9)

 Q_{light} = light thermal gains N_{light} = number of lights

H. Bioclimatic cooling index (Bcool)

To calculate this index, we obtain hourly thermal gains for a typical summer day, using the same method employed with G_{cool} (IRAM 11659 1-2) [3]. We consider not only the envelope but the hourly solar radiation as well. We calculate hourly temperatures, using the same method as with G_{heat} .

Humidity remains constant during the day in order to simplify this tool, designed for the first steps in the design process.

Occupancy is the same as for B_{heat}.

In order to consider solar radiation incidence on the envelope— according to orientation and materiality— we replace the maximum design temperature for the sol-air temperature.

In this kind of analysis, thermal gains and losses vary hourly, considering if outdoor temperature is higher or lower than indoor comfort temperature. The algebraic sum of these values results in the total thermal load for a typical summer day

I. Integration of variables: The use of *GA*

The variable inputs are the location of the volumes. The envelope materials do not feed the GA, even when they are parameterised. The GA iterates until it finds the alternatives that show the lowest values for B_{cool} , calculating at the same time, B_{heat} .

International Journal of Civil and Structural Engineering Volume 3 : Issue 2 [ISSN 2372-3971]

 B_{heat} results are separated into three categories: the first does not considers neither solar gains nor internal gains (people, lighting and equipment) only losses, the second one, subtracts solar gains to losses and the third one, subtracts solar gains and adds internal gains to losses. Besides, we calculate losses per m2 for both typical days.

ш. Results analysis

After running the program as many times as we determine, we choose the best six solutions that the GA finds. Table IV shows these results. Figures 4 to 9 show the six different building arrangements. We can observe a great variety of energy efficient solutions that fulfil the required requisites.

On the basis of the results, we can analyse which are the variables that affect the energy performance

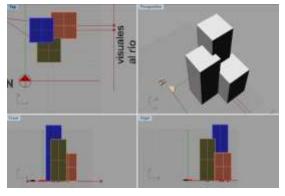


Figure 4. Morphological alternative 1.Source: the authors

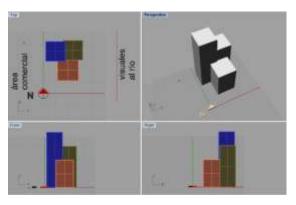


Figure 5. Morphological alternative 2. Source: the authors

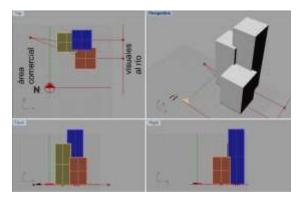


Figure 6. Morphological alternative 3. Source: the authors

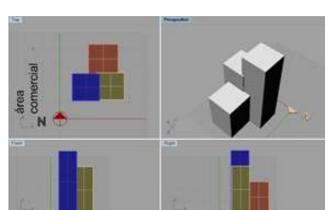


Figure 7. Morphological alternative 4. Source: the authors

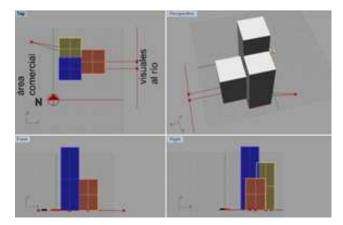


Figure 8. Morphological alternative 5. Source: the authors

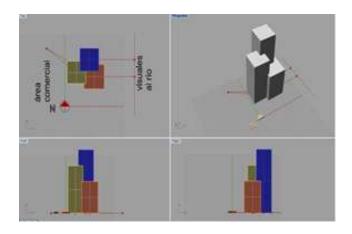


Figure 9. Morfphological alternative 6. Source: the authors

In relation to these indexes B_{heat} y B_{cool} , we can see the impact of summer condition in building design for zone IIIb (IRAM 11603). Energy demand for cooling determines to primarily adopt efficiency measures for summer and not for winter, as Figure 10 shows.

Figure 10 shows the energy demand according to typical summer and winter days

Publication Date : 31 August, 2016

Publication Date : 31 August, 2016

alternatives	$\mathbf{B}_{\text{heat}}, \mathbf{B}_{\text{cool}}$ and energy demand						
Morphological alternatives	B _{heat} Envelope losses	B _{heat} Envelo pe losses – solar gains	Bheat Envelope losses– solar.gain s+interna l gains	Energy demand for heating/a rea	Bcool	Energy demand for cooling/ area	
Γ	W/m ³ .day	W/m ³ .d ay	W/m ³ .day	W/m ² .day	W/m ³ .d ay	W/m ² .da y	
1	141.9	32.4	-40.24	-100.6	225.3	543.5	
2	145.8	29.9	38.1	92.6	154.4	375.1	
3	176.2	61.9	48.19	120.8	283.2	709.9	
4	168.5	52.6	52.0	117.9	509.9	1156.4	
5	149.8	34.7	51.1	130.3	343.4	875.9	
6	151.0	35.0	-44.88	112.6	268.3	673.1	

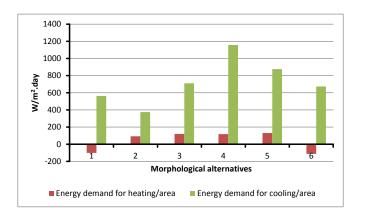


Figure 10. Energy demand for typical winter and summer days

IV. Conclusions

This digital tool proves to be effective to design and optimize energy efficient high-rise buildings, offering to the designer more options than if he uses a traditional design method. In one operation, we solve the building geometry and its energy performance, in real time and in a feedback process. We verify the dependence of the envelope geometry in energy consumption while fixing area, materiality and occupancy, founding six possible solutions.

The calculation of new indexes for heating B_{heat} and cooling B_{cool} lets evaluate simultaneously both parameters, providing a common basis of comparison: hourly energy demand for both winter and summer typical days. If we only evaluate G_{heat} (IRAM 11604) and G_{cool} (IRAM 11659), it is not possible to compare them. Based on the results of these new indexes, we can assert that energy efficient design cannot disregard summer condition for this humid temperate bioclimatic zone (IRAM 11603). However, the current energy efficiency law in Buenos Aires province requires a minimum G_{heat} , only considering winter condition. The same issue applies to IRAM 11900 Building Energy Labeling. Probably, we should tend to a normative model that without using an expensive method of dynamic simulation like Greenbuilding LEED protocol—could offer reasonable, inexpensive and quick results with a steady state model. In some extent, it is the proposal of this work.

References

- Stuart Russell- Peter Norvig (2010) Artificial Intelligence, A Modern Approach- 3rd editionPrentice Hall- Pearson Education Inc. New JerseyB.
- [2] Buenos Aires City Environmental Codehttp://www.cedom.gov.ar/es/legislacion/
- [3] IRAM Standard 11604: Building Thermal Insulation. Hygrothermal conditions Verification. Energy saving in heating. Heat Losses Volumetric Coefficient. Calculations and limit values- Instituto Argentino de Normalización y Certificación- 2nd ed. 2001-Buenos Aires
- [4] . IRAM Standard 11659 1 y 2- Building Thermal Insulation. Hygrothermal conditions Verification. Energy saving in cooling. Part 1: Vocabulary, definitions, tables and data to determine cooling load-Part 2: Housing Buildings- Instituto Argentino de Normalización y Certificación- 2004-Buenos Aires
- [5] IRAM Standard 11603- Building Thermal Conditioning. Argentine Environmental Classification -Buenos Aires- 2011.
- [6] Goldberg, David (1989) Genetic Algorithms in Search, Optimization & Machine Learning- Adison, Wesley, Longman, Inc- Masachussets.
- [7] IRAM Standard 11605: Building Thermal Conditioning. Habitability Conditions in Buildings. Transmittance maximum values in walls and roofs. Buenos Aires. 1996.
- [8] In Buenos Aires City, Law 4458/12 and in Rosario City, ordinanace 8757/11
- [9] . NURBS, Non-uniform rational basis-spline
- [10] Tedeschi, Arturo (2011), Parametric Architecture with Grasshopper Primer- Edizioni Le penseur- Potenza, Italia
- [11] http://www.liftarchitects.com/blog/2009/3/25/grasshopper-primerenglish-edition
- [12] IRAM Standard 11507-4: Carpintería de obra y fachadas integrales livianas. Ventanas exteriores. Parte 4- Requisitos complementarios. Aislación térmica. Buenos Aires. 2010
- [13] IRAM Standard 11604 Apendix B- p. 19
- [14] http://wind-data.ch/tools/profile.php?lng=en
- [15] Balcomb, D.- Passive Solar Buildings- The MIT Press- London- UK-2008
- [16] Yarke, E. et al.- Un programa de cálculo para optimizar la relación entre Sustentabilidad Energética y Rentabilidad de Sistemas Solares Pasivos: El programa Optimix- versión 3.1- XI Incontro Nacional de Tecnologia no Ambiente Construido- ENTAC 2006- Florianópolis-Brasil

About Author (s):

This work intends to provide a normative model that— without using an expensive method of dynamic simulation like Greenbuilding LEED protocol—could offer reasonable, inexpensive and quick results with a steady state model.

