

110

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

Constructing Performance Comparison

Environment of Search Engines
Takehiko Murakawa

Abstract—Comparison environments among different

versions of free full-text search engines for verifying search

performance and interoperability are reported. Those

environments help the developers of retrieval services to decide

whether the deployed search engine should be upgraded or not.

In this research the target search engines are Apache Solr and

Groonga. The constructed environment of Solr enabled one to

make a crossover search using versions 1.4.1-5.4.0 together

with a sequential search command, while for the variety of

Groonga versions we adopted Docker to produce containers of

the versions. The search comparison showed that relatively

new versions made no difference with regard to search

performance.

Keywords—full-text search, search engine, developer

support, version management.

I. Introduction
Many people regularly use Internet retrieval services

such as Google and Yahoo! to find desired information over
the Internet. Apart from those worldwide or nationwide
applications, many companies and organizations release the
retrieval services for their own content to the public. Thanks
to these independent full-text retrieval services, we enjoy
instant, omission-free search, while the content holders and
the developers are able to gain an understanding of their
intellectual property and get on the trail of the service
improvement, respectively, through the access logs. For the
realization, the developers usually introduce a Web server
and a full-text search engine which are ready-made while
designing and implementing a Web application. Note that in
this paper a “search engine” means a piece of software that
performs a full-text search, but not an Internet service like
Google.

It is important for the developer to select a suitable
search engine in the development of the retrieval service.
Among the previous works, a scalability evaluation was
attempted [1]. Various open source search engines were
reported in a workshop [2].

However performance should also be compared among
versions of the same software. For example, Apache Solr [3]
and Groonga [4] are search engines whose new versions
have been frequently released. In the meanwhile, the
developers of retrieval services suffer from the choice of
version. Some have to select the appropriate version
carefully while some have to judge whether or not the search
engines used in their services should be upgraded according
to the new version’s release. They are concerned that a
careless upgrade will cause the arrest or degrade the
performance of their services. Therefore the operation check
before the deployment or the upgrade has a significant role
to play.

Wakayama University

Japan

Based on the circumstances describe above, we attempted
comparative evaluation. In concrete terms, we constructed
the comparison environment for major versions of Apache
Solr and Groonga [5, 6], made indices of the same text files
using the respectively installed versions, and confirmed the
numbers of relevant documents by means of the common
search terms.

II. About Solr and Groonga
Apache Solr (abbreviated as “Solr”) and Groonga are

high-performance search engines which are available freely.
They have much in common; the software has been
upgraded frequently; we can store and search documents by
means of HTTP as well as using a traditional command line;
the database is not unlocked while registering a document.

However the structures of those two search engines are
entirely different. Solr holds Lucene to the heart of search
functionality and includes practical features for document
registration and search. Since this software is written in
Java, we can extent the function by attaching one-of-a-kind
Java class files. When configuring the properties, we usually
edit some XML files and (re)start the server. The original
version was created in 2004, and the latest version is 5.4.1.
Newer versions of Solr have Kuromoji, a library for
handling CJK (Chinese, Japanese, and Korean) strings
properly, as a class file and described in a configuration file.

Groonga is a search engine made in Japan but supplies
fulfilling English documentation. This program is written in
C. While the basic functions are furnished in a C library,
libraries for using Groonga in other programming languages,
such as Python and Ruby, are available as well. It is not hard
to serve a function in full-text search in cooperation with
relational database management systems such as
PostgreSQL and MySQL. Although a string is basically
decomposed by means of N-gram, we can instead employ
other natural language processing tools for decomposing
documents to be registered and search terms. Taking
advantage of the features described above, Groonga has
been applied to the management of text data written in
Japanese and other languages [7, 8]. The original version
whose number is less than 1 was revealed in 2010, and the
latest version is 5.1.1. In recent, a new version of Groonga is
released on 29th every month.

This research attempts to compare the functionality of
several versions, by constructing separate execution
environments in parallel with the search engines. The
comparison between Solr and Groonga is beyond our
interest, although the difference among the Internet retrieval
services [9] and the performance comparison between
Lucene and Indri search engines [10] have been reported.

111

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

III. Comparison among versions
of Solr

A. Constructing comparison
environment
The versions of Solr that we adopted for constructing the

comparison environment, together with the release dates and
the port numbers during execution, are shown in TABLE I.
Although the default port number of the Solr server is 8983,
we used other numbers depending on the versions so that we
could run multiple versions in a server at the same instant
and make a crossover search. We stored all the component
files of Solr in a computer which runs Debian GNU/Linux.

TABLE I. TARGET VERSIONS OF SOLR

Version
Release date

(year-month-day)
Port number

1.4.1 2010-06-18 14183

3.1.0 2011-03-27 31083

3.6.2 2012-12-19 36283

4.6.0 2013-11-19 46083

4.9.0 2014.06-20 49083

4.10.4 2015-02-28 40084

5.4.0 2015-12-05 54083

Moreover we set on about 12,000 plain text files which
describe bibliographic information about ancient documents,
written in Chinese and (ancient and modern) Japanese, and
converted them into XML files to register on each versions
of Apache Solr.

For the registration and the retrieval, we made minimum
amounts of configuration files’ modification. We edited
schema.xml to add “field” elements for the retrieval and
remove unnecessary directives. In the configuration file of
version 1.4.1, we additionally described “<tokenizer
class="solr.CJKTokenizerFactory"/>” for the program to
treat Chinese and Japanese characters appropriately. The
“schemaless” mode, which newer versions of Solr provide,
was not adopted.

We changed the port numbers of the Solr servers
according as their versions so that every installed version
could go live concurrently in the single Linux server.
Moreover we made a Ruby script file. When we run the
script with a search term in a command line, the program
searches on the Solr servers in sequence, makes another
search using the sequential search command grep, and
reports the number of relevant documents of the search term.
The screenshot of an execution example is shown in Figure
1.

Figure 1. Example of command-line crossover searches.

B. Results
Typical search terms and the resulting number of

relevant documents are shown in TABLE II. We describe
the Roman spelling and the meaning of Chinese characters
used in this table in Appendix. Before the search using grep,
the developed Ruby script modified the search term
including “AND” and “OR” to enable so-called AND and
OR searches. We had no special handling for quoted search
terms.

TABLE II. SEARCH RESULTS

Search term
Number of relevant documents

1.4.1 3.1.0 3.6.2-5.4.0 grep

 534 17 534 534

 472 113 4,284 472

 68 68 4,284 68

" " 472 113 472 0

" " 68 68 68 0

 2,116 0 2,116 2,116

 1,282 560 2,116 1,282

" " 1,282 560 1,282 0

AND 1,282 0 1,282 1,282

OR 2,116 0 2,116 2,116

From the results of giving single search terms without
quotation, we made sure that the numbers of the version
1.4.1 were in strict correspondence with those of grep, and
that it indicated the numbers for two-letter search terms
except for the version 3.1.0. Using the version 3.6.2 and
newer, the number of relevant documents for a search term,
denoted by S, having more than two characters was larger
than those for the search term that consists of the first two
characters of S. However if S is quoted, then the numbers
are the same as what the version 1.4.1 reported.

When the search term S described above is tokenized by
means of bi-gram (For example, if S is “ ”, then the
two tokens “ ” and “ ” are derived.), and we made a
search where the search term was the parted tokens with
“AND” in between, we obtained the number just same as the

112

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

FROM ruby:2.2.2

MAINTAINER takehiko

RUN apt-get update && apt-get install locales locales-all

RUN gem install rroonga -v 5.0.9 --no-ri --no-rdoc

FROM tmrr:5.0.9

MAINTAINER takehiko

ENV LANG=ja_JP.UTF-8

ADD ["text.tgz", "/root"]

ADD ["rr.rb", "/root"]

RUN cd /root && ruby rr.rb 5.0.9

quoted search term, apart from grep. When replacing
“AND” with “OR” and searching, we found that the
numbers by the version 1.4.1 and grep were the same as
those by the versions 3.6.2-5.4.0.

These results follow that relatively new versions of Solr
treat of a CJK search term as follows: (1) the search term is
tokenized with bi-gram into two or more two-letter words;
(2) if the original search term is quoted, then the relevant
documents are the intersection of those of words; (3) if the
original search term is not quoted, then the relevant
documents are the union of those of words. In other words,
the feature of morphological analysis using Kuromoji is not
effective by default.

IV. Comparison among versions
of Groonga

A. Constructing comparison
environment
The versions of Groonga that we adopted for

constructing the comparison environment together with the
release dates are shown in Table III. Many versions were
released on 29th in various months since the developer of
Groonga would like to have special importance for the
number 29, namely “niku,” a Japanese word which means
“meat,” to produce a regular and aggressive improvement.
The release of major upgrade to version 5.0.0 also includes
“niku” by finding the number two in the second month of
the year and combining the day. Version 5.0.2 was
exceptionally released on a different day, including an
urgent bug fix.

TABLE III. TARGET VERSIONS OF GROONGA

Version
Release date

(year-month-day)

4.0.8 2014-11-29

5.0.0 2015-02-09

5.0.1 2015-03-29

5.0.2 2015-03-31

5.0.3 2015-04-29

5.0.4 2015-05-29

5.0.5 2015-06-29

5.0.8 2015-09-29

5.0.9 2015-10-29

5.1.1 2015-12-29

When introducing several versions of Groonga to a
single computer, we need to take into consideration the
versions of the required software, or the software that should
be installed prior to Groonga’s installation. To remove the
burden of other software versions’ management, we
installed Rroonga, developed to use the functional
capabilities of Groonga with a programming language Ruby.
If we have a computer in which Ruby has been installed and
the command line interface is available, and run the
command “gem install groonga,” then the latest version of
Rroonga together with Groonga library will be installed. In

addition, when executing “gem install groonga -v 5.0.0”, the
version 5.0.0 of Rroonga (and Groonga library) will be
enabled. Although we are able to have two version or more
installed in a computer, it seems that the later version is used
when we run Ruby or a script file written in Ruby and load
Rroonga. Conclusively we made a shell script file and
execute it to introduce Rroonga of which the versions are
listed on TABLE III, make an index for the prescribed text
files, and forthwith remove Rroonga.

The generated index files can be used for static analysis
such as file comparison, but it is inconvenient to get rid of
Rroonga instantly since we cannot do the operability
assessment. And then we attempted to make Docker’s
containers of Rroonga and the index, where Docker [11] is
an open platform of virtualization. Figure 2 shows the
Docker images used or developed for our purpose; “tmrr” is
an image with Rroonga being installed, while “tmtab”

includes the document and index files. Each arrow denotes
the dependency relationship.

Figure 2. Docker images developed for comparison environment of

Groonga.

All the code of Dockerfile of tmrr:5.0.9, described for
installing version 5.0.9 of Rroonga, is shown in Figure 3.
The instruction is based on the ready-made image
“ruby:2.2.2” and lets Docker install the library including
Rroonga for future use. All the code of Dockerfile of
tmtab:5.0.9, defined for indexing given documents using
version 5.0.9 of Rroonga, is shown in Figure 4. This is
derived from the image “tmrr:5.0.9”; after setting the
environment variable for character code and importing
document files and a script file “rr.rb” written in Ruby, the
script runs to make an index for the document files and
export all the database files to the host environment.

Figure 3. Dockefile of tmrr:5.0.9 described for installing version 5.0.9 of

Rrronga.

113

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

Figure 4. Dockefile of tmtab:5.0.9 described for indexing using version

5.0.9 of Rrronga.

It took about 70 seconds to complete a “tmrr” container
and about 40 seconds for a “tmtab” container, using an
Ubuntu 14.04 personal computer which equipped a CPU of
Intel Core i7-4960X (3.60GHz). The difference of execution
times among versions was not seen.

B. Results
The list of database files produced by Rroonga is shown

in Table IV. Version 5.0.8 or older generated eight files
while the latest two versions held an extra file. Common
files were the same byte size, although the checksums
obtained from the md5sum command were mostly different
(the same check sums between some pairs of versions were
found to a minor extent).

TABLE IV. DATABASE FILES PRODUCED BY GROONGA

Version File name Size (Bytes)

All index.db 4,096

All index.db.0000000 12,857,344

All index.db.0000100 16,842,752

All index.db.0000101 8,437,760

All index.db.0000102 100,937,728

All index.db.0000103 60,067,840

All index.db.0000103.c 46,141,440

All index.db.001 1,048,576

5.0.9 and 5.1.1 index.db.conf 8,437,760

In the next place, we activated “tmtab” containers and
mounted another version’s database files. For several simple
search terms, the number of the relevant documents were the
same regardless of the pair of versions. The APIs
(Application Programming interfaces) that are supplied for
newer versions of Rroonga are operated on older version’s
database file while Ruby threw an exception when we used
the function available in newer versions in a container of
older versions, no matter whether the mounted database was
newer or older.

V. Conclusion
This paper reported comparison environments among

various versions of Solr and Groonga so that we are able to
verify search performance and interoperability. In the
environment within Solr, we made sure that the number of
the relevant documents undergo a huge change by the
presence or absent of quoting the search term that has more
than two characters, and that the numbers produced by
version 3.1.0 differs from those by the others since that
version holds an improper way of tokenization. In the
environment within Groonga, we made sure that the
database files generated by each version are compatible, that
is, available to other versions. For both search engines, it
was suggested that relatively new versions are compatible
with one another and the developer can upgrade the search
engine in the service with no incident.

Future works include the construction of comparison
environment for a greater diversity or for other search
engines such as Elasticsearch, and the provision of selection
support system of search engines that will match the
developers’ needs.

Acknowledgment
 This work was supported by JSPS KAKENHI Grant
Numbers 26330365 and 25242037.

References
[1] R. Hayasaka, T. Hayashi, and R. Onai, “Development of a scalable

search engine using open source softwares,” Computer Software,
Japan Society for Software Science and Technology, Vol.26, No.4,
pp.138-156, 2009 (in Japanese).

[2] A. Trotman, C. L. A. Clarke, I. Ounis, S. Culpepper, and M.-A.
Cartright, “Open source information retrieval: a report on the SIGIR
2012 workshop,” ACM SIGIR Forum, Vol. 46, Issue 2, pp.95-101,
2012.

[3] Apache Solr. http://lucene.apache.org/solr/ (Accessed 28 January
2016).

[4] Groonga - An open-source fulltext search engine and column store.
http://groonga.org/ (Accessed 28 January 2016).

[5] T. Murakawa and K. Fujii, “Performance comparison of search
engines,” Proceedings of the 2015 IEICE General Conference, D-4-4,
2015 (in Japanese).

[6] T. Murakawa, “Performance comparison among versions of search
engine Groonga,” Proceedings of the 2016 IEICE General
Conference, D-4-12, 2016 (in Japanese).

[7] K. Sato, K. Takeuchi, and K. Kageura, “Terminology-driven
Augmentation of Bilingual Terminologies,” Proceedings of the XIV
Machine Translation Summit, pp.3-10, 2013.

[8] M. Yoshioka and T. Fujiwara, “Construction of a Japanese gazetteers
for Japanese local toponym disambiguation,” Proceedings of the 7th
Workshop on Geographic Information Retrieval (GIR ’13), pp.57-63,
2013.

[9] L. Vaughan, “New measurements for search engine evaluation
proposed and tested,” Information Processing & Management, Vol.40,
Issue 4, pp.677-691, 2004.

[10] H. Turtle, Y. Hegde, and S. Rowe, “Yet another comparison of
Lucene and Indri performance,” SIGIR 2012 Workshop on Open
Source Information Retrieval, pp.64-67, 2012.

[11] Docker - Build, ship, and run any app, anywhere.
https://www.docker.com/ (Accessed 28 January 2016).

Appendix
 We give an account of the Chinese characters used as the
search terms in the comparative evaluation of Solr. “ ”
(Muromachi) is a place where the Japan’s feudal
government had been located in the 14-16th centuries, and
the era of that government is called “ ” (Muromachi
Jidai). Since the character “ ” (utsushi) means
“transcribed”, the search term “ ” (Muromachi
Jidai utsushi) will give a search query to find the
bibliographic information whose document was transcribed
in Muromachi Era. Although “ ” (yamadera) indicates a
mountain temple in Japanese, we use the word only as the
last two characters of “ ” (Ishiyamadera) in this
paper. “ ” (Ishiyamadera) is a well-known temple of
Japan, located in “ ” (Ishiyama), near Lake Biwa.

About Author:

Takehiko Murakawa is an Associate Professor of

Faculty of Systems Engineering, Wakayama
University, Japan. He received the doctoral degree

from Nara Institute of Science and Technology,

Japan, in 1998. His research interests include
information retrieval and recommendation, digital

heritage, and software engineering.

