

94

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

Virtual Machine Deployment in Cloud Computing

Platform

Chun-Hung Richard Lin, Tzu-Hua Huang, and Kuan-Hua Tseng

Abstract—In the paper, we use Bin-Packing algorithm to

solve the resource-deployment problems. We have not only

discussed different Bin-Packing algorithms, but also provided

the refinement method to equip with Bulk Arrivals

functionality while at the same time achieving an approximate

efficiency of Online Bin-Packing and the similar result of

Offline Bin-Packing. Finally, trying to testify each algorithm’s

impact on cloud service system’s performance, we used the

queueing system to compare four different algorithms’ impact

in our model and analyze each reference data and correlations

to provide a scheduling system which aligned with the need of

Cluster Deployment from a developer’s viewpoint.

Keywords—virtual machines, docker, swarm, cloud

computing, bin-packing

I. Introduction
Nowadays the cloud computing is an essential network

application, and the most attracting part of it is the
virtualization of the hardware resources and the dynamic
connection of Internet. Therefore, there is no need to
maintain the infrastructure for users or even service provider
itself. Our study discusses a more efficient way of resource
management from the viewpoint of the service provider. We
discovered a virtual machine resource deployment algorithm
that considers the maximum number of services under fixed
cost and the virtual hardware architecture of cloud
computing. The traditional way to allocate the hardware
resource is to quantify the hardware specifications and
calculate a suitable set of hardware usage according to the
requirement. On the Docker platform which we have
adopted, the service, most time is one or two programs
running under background, will be packed and run in a
Linux Container. These services have their requirements.
Therefore, we take the old bin packing problem as an
example to research this deployment problem of virtual
machines and discuss the management of cloud application
resources nowadays.

II. Background

A. Linux Container (LXC)
LXC is a virtualized Linux user interface. The main goal

of LXC is to create several standalone Linux systems, above
a single Linux environment. By creating Container, users

Chun-Hung Richard Lin, Tzu-Hua Huang, and Kuan-Hua Tseng

Department of Computer Science and Engineering

National Sun Yat-sen University
Kaohsiung, Taiwan, R.O.C.

can get a Linux environment, which is almost the same an

autonomous one, without dividing the kernel of the host

operating system.

Fig. 1: LXC in Linux Host

LXC utilizes Control groups (Cgroups) technology and

namespace to obtain independent environments with full

resource accessibility at the same time. Cgroups not only

integrates shared resource of the host such as CPU, memory

and NIC, but also provides complete control of it. By

limiting, priority, monitoring and resource isolation of each

process, the Cgroup can manage resources effectively.

Namespaces, on the other hand, create an isolated

environment which includes the thread tree, network, user id

and mounted file system so that the application can run on it.

B. Docker and Swarm
Docker is an open source project written by GO

language as a Container management engine based on LXC.
The hardware portability and platform portability can be
achieved at the same time by introducing Docker engine.
That means Containers can be installed on any Linux
platform without additional compiler or system
configuration. This characteristic makes the application
which is developed based on the Docker Container, able to
retrieve a running environment that is freer.

Compare to the native LXC; Docker is more isolated

and lighter. Docker also supports the multilayer image file

as a pattern to create the Container. When Container has

built, the top layer remains writable for providing service.

The Docker Container is portable and able to run on

different machines.

Fig. 2: Structure of Docker

95

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

Docker Swarm is one open source subproject of the

Docker project. The main purpose of Docker Swarm is to

build a native cluster management tool and make every node

of Docker host combined with a single virtual machine.

Swarm is written by GO language as well as the Docker, and

there is a developing version of Swarm right now. So it is

not recommended for production using, but still the

architecture and some characteristics are worth for further

research with the growing functions and technologies in this

project.

Swarm is based on the standard Docker API thus, all

Docker daemon tools such as Dokku, Compose, Krane,

Flynn, Deis and DockerUI, can make their connection to

Docker daemon through Docker clients. With Swarm,

Docker is no longer a single host functionality but

controlling and deploying Containers across multiple hosts,

just like a full-resourced mainframe. The modularization of

Swarm can switch the scheduler model or another module to

a different one like Mesos, and that also makes the

underlying Docker engine not affected by Swarm so the

demands can customize it.

III. Resource Allocation
Algorithm

We propose a scheduler designing for allocating
resource on cloud service platform. First, the resource
allocation problem can be mapped to conventional bin
packing problem as solution referencing, and combining
DDMS, Docker platform and Docker Swarm, plus the
optimization of the real-time, we conclude the flowchart of a
PaaS scheduler as below.

Fig. 3: Design of cloud service scheduler

The PaaS scheduler collect all the information and
arguments from components, then select the appropriate
nodes to deploy Containers. Each component has its
function described as below:

Priority Policy: Calculates the priority of all service
requests according to their specific arguments. In our system,
we evaluate the weight of a request not only by the
arguments given by its initiating parameters but also by the
service type, normal type and real-time type.

Object Function: When PaaS provider constructs their
cloud cluster, there will be many object orientations need to
be concerned, such as loading balance, fault tolerance and
the maximum number of running services. Each object have

some algorithms for different demands,;our system can
specify the algorithm according to setting of PaaS
administration.

Scheduler Strategy: The Scheduler Strategies, including
the one we proposed, are imported by Docker Swarm so that
the Scheduler can select an algorithm among them for best
using. It is easy for registering strategy to Swarm by its
modularized design.

Strategy Optimizer: In our system, we need several
strategy optimizer to limit the search for ultimate, and also
people can develop their optimizers for algorithms. That is
why we design the optimizer as a standalone component.

A. Scheduler Design
We propose an improve schedule algorithm based on bin

packing problem and cloud service model, to increase the

maximal volume of service process with limited nodes. The

distributed computing system Hadoop uses the Delay

Scheduling algorithm to raise the data locality by pending

scheduling. By choosing the task which can use the local

data to deploy first, we can reduce the unfairness of resource.

We take Delay Scheduling algorithm as a reference and

propose our algorithm which divides into two parts, Batch

scheduling and Delay Scheduling.

B. Batch Scheduling
The purpose of batch scheduling is to accumulate the

service requests. We can see that there is a significant

difference between numbers of the packed box, with

preprocessing of sorting and without.

The benefit of online schedule is real-time calculating,

once the service request has arrived, it immediately get

deployed. It is reasonable to take online schedule in a small

cloud computing system. However, there may be bulk

amount of service requests arrived at the same time in

relatively larger cloud computing system. Online scheduling

is not suitable for this situation; neither is Offline scheduling.

As the consideration above, we design a schedule model

which is between online schedule and offline schedule. This

new scheduler can produce a better result than online

schedule in an acceptable delay time.

In this proposed schedule algorithm, we implementation

two offline scheduling, Best Fit Decreasing for an

approximate solution and Bin Complete for the best solution.

For the batch purpose, all service requests will be stored in a

FIFO queue according to their arrival time; we also set a

96

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

scheduled cycle to make the scheduler wait for a fixed

period then start to calculate with this accumulative requests.

After the scheduler has activated, we sort all the

accumulative requests in descending order then send this

sorted queue to a scheduling algorithm. The detail in

pseudocode is shown as above.

C. Delay Scheduling
The algorithm for the bin packing problem such as the

Best Fit Decreasing and Bin Completion, put the larger
items into the box first, then the remaining small items have
to wait to be packed till there is enough space of already
opened the box. This may lead to a potential problem that
the small items will be late packed or never be packed into
the box due to there is not enough space after the larger one
has packed. At this situation, the calculation time will
greatly increase. For the purpose to reach the speed of online
scheduling, we took the central idea of Delay Scheduling
and designed the tolerant interval to limit the calculation
time to an acceptable one.

First, we sort the requests in the batch queue in
decreasing, then the scheduler handles the request which has
the order smaller than the tolerant interval only. For those
requests over the tolerant interval, will be a move to the next
batch. This Delay Scheduling can solve the starvation
problem of requests with the small demand of resource.
However, the tolerant interval decreases the accumulating
effect of the Batch Scheduling. The more tolerant interval
increases, the better result calculated, but this will lead to
longer calculating time and make the system delay
responded. There must be a tradeoff between these two
kinds of designs.

D. Real-time Request
There are two types of cloud service request, normal

and real-time. The real-time request always comes with a

perfect system response time. For that, our system gives this

kind of request higher priority to make it response in time.

Also, a special Container called real-time Container is

proposed in our system to help the real-time request.

Real-time Scheduling:

We process real-time request first by adjusting the

priority of it. This will also influence the calculating result

of the algorithm and reduce the total capacity of the system,

but the real-time restriction can be satisfied.

Real-time Container:

Based on the DDMS, our system has the capability to

send control message to the cluster node; this feature can

also be used for setting real-time service node.

UNIX kernel gives different setting which is about the

scheduling policy and process priority to real-time process.

We can give the real-time setting to a real-time node which

is deployed of a real-time Container and real-time request, to

obtain more resource to meet the real-time restriction. This

can be done by these two UNIX commands:

sudo docker inspect –f `{{.State.Pid}}’ $CONTAINER_ID

First, we can get the PID of this Container by this command.

sudo chrt –r –p $priority(32~63) $PID

Then gives the real-time setting with Round Robin schedule

strategy and priority to this Container. The Round Robin

here is for simultaneously running of multiple Containers

instead of obtaining all resource by a single Container.

Moreover, the priority can be 0 to 19 for a normal user, 20

to 31 for the system, and 32 to 63 for real-time service

which we are trying to adopt in this real-time system..

IV. Experiments
For quantization modulation, we represent the queueing

system on a cloud computing service platform by a queue

model. We can calculate the performance of this queueing

system by adjusting the parameters of it.

Fig. 4: Queueing System

The request with given needed resource (CPU, Memory)
arrivals in this system and is put into the queue, and the
scheduling system calculates and deploys it to the
appropriate node which satisfies the initial arguments of this

97

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

request and the cluster policy. After the Container has ended,
the system will recover its resource and send a message to
the scheduler, to form a life circle of a request. Due to the
difficulty for quantization of real-time request, these
experiments is only for the normal request, the real-time
request is excluded.

We can user several characteristics to represent the
queue model, Input Source, System Capacity, Behavior,
Service Discipline and Service Facility. Then we quantify
these characteristics to the arguments of the program which
represented by the Kendall notation: A/B/C/X/Y. A stands
for the distribution of arrival time of requests; B is the
distribution of service time, C is the number of the scheduler,
X is the system capacity and Y is the queueing discipline.

A. Experiment Parameters
These experiments are only for the usual requests, so

upon applying the Kendall notation to this queueing model,

it can be represented as following: Request Arrival Rate /

Service Rate / Cluster Node Number / Queueing Buffer /

Schedulable. In these experiments we treat Queueing Buffer

as unlimited, this makes the expression of our model as

A/B/C/∞/Schedulable. The parameters to this expression are

A, B, C.

In addition, to evaluate the performance of the

scheduling algorithms and the scheduling designs which we

have proposed at chapter 4, there are two extra parameters

need to be added in, schedule cycle and tolerant interval.,

Therefore the total parameters to our experiments are

A/B/C/α/β, where

 A as average arrival time of request.

 B as average service time of a request.

 C as the number of Cluster Nodes.

 α as the schedule cycle

 β as the Tolerant Interval

B. Experiments Detail
This experiment is to evaluate the total system time and

the average service time of single request on our designed
scheduler. We fix the numbers of the service nodes and the
number of incoming requests. Then analysis the result about
the performances under the different design of scheduling
algorithms.

This experiment has implemented four different
scheduling algorithms and compared the differences in
performance. These four algorithms are:

 Online Best Fit (Online Bin Packing):

The default algorithm of Swarm Strategy Component. In
this implementation, all requests in the waiting queue
will be calculated every cycle, and deploy to service
node according to their arrival time. This algorithm
calculates the minimal number of nodes to serve all the
requests.

 Online Spread:

Online Spread is an algorithm in the Swarm Strategy

Component. It is similar with the Online Best Fit except

it calculates for averagely deploying the requests to

nodes.

 Batch Best Fit (Batch Bin Packing):

This kernel of this algorithm is Best Fit. It has our

proposed design including the concepts of batch

scheduling and Delay Scheduling. The requests will be

processed only when the given clock has reached. The

calculation will be influenced by schedule cycle and

tolerant interval.

 Batch Bin Complete:

Another implementation of our proposed design, the

kernel algorithm is Bin Completion. This algorithm is

for the best solution.

C. Experiment Configuration and
Results

The experiment is configured as below:

 The average arrival time of request (A) = 2 clocks,

exponential distribution.

 Service time (B) = 60 clocks, constant.

 Number of cluster nodes (C) = 5 nodes.

 Schedule cycle (α) = X, variable.

 Tolerant interval (β) = 0 cycle.

 Expression of experiment 1 queueing model:

M/D/s/∞/Schedulable.

The experiment results are shown below:

Fig. 5: Total System Time of the experiment

Fig. 6: Task Life Time of the experiment

At Fig. 5 and Fig. 6, we can see the two algorithms
which are built-in the Swarm Strategy Component, Bin
Packing and Spread, are not influenced by the schedule
cycle. Moreover, these two algorithms are very differing
from either total system time or task lifetime. This is due to

98

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

the differences of purpose, online bin packing calculates the
minimal number of service nodes. Instead online spread is
ideal for deploy service averagely. As the result, the online
spread is outperformed by the online bin packing.

Another two algorithms which contain our proposed
scheduler design. We can treat the average incoming request
which can be calculated by the schedule cycle (X-axis, α) /
average arrival time of the request (A) as the scale of bin
packing problem due to the Delay Scheduling design.

 N (Problem size) = α/A

Through observing, we can find these two algorithms

can get better performance on certain schedule cycle (X-

axis). Furthermore, we can get another factor which

influences the result: the relationship between the service

time (B) and schedule cycle (α).
Because the node resources may be released and

recovered at different timing, B and α influences the utilize
rate of the resource. If a resource has released before next
round of scheduling, this resource will not be occupied again
till next scheduling has executed. In an online system, there
is no such concern because the scheduling will be executed
every cycle. Instead the batch system needs to face the
resource utilize rate problem. For that, we define the utility
rate as below:

And calculate the utilizing rate by fixing the value of B to 60.

Table 1: Utilization rate

As we can see from Table 5-3, if we cannot make

utilize rate reach to 100%, the total system time and the task

lifetime will greatly increase. This research tells us that we

have to pay attention to the relationship between B and α

when to design a scheduler. If B is constant, then α should

be a divisor of it, to make the utilize rate 100%.

The next experiment is that makes B an exponential

distribution, then calculate the utility rate under conditions:

the total number of requests = 10000, and utility (Y-axis)

value is the average value of 100 times of simulation.

Fig. 7: Resource utility

This experiment calculates the utility under the

condition that the service time (B) is given by exponential

distribution. We can find that if the service time (B) is not

fixed, the utility and the schedule cycle (α) are in inverse

proportion. Moreover, the less the average value of service

time (B), the less the utility. This is due to larger service

time (B) makes the system full loading longer, as the utility

is increased.

Conclusions

We take Docker engine as our foundation to

implement a cloud service system and then to study the

scheduling system of it. Additionally, the Docker Swarm is

taken as the cluster management system. We proposed a

delayed scheduling design for scheduling algorithm which

modifies two kernel functions to reach the maximum service

count as the target of cluster deployment. The request for

real-time sustems is also considered. Then we implemented

our scheduler to a cloud service system and made an

experimental result of it. Finally, we compared our design

with other scheduling algorithms and found the direction for

improving.
On the other hand, we implement two kernel algorithms

for bin packing as our delayed scheduling design in this
paper; they are Offline Best Fit Decreasing and Offline Bin
Completion. The Bin Completion have higher cost and
higher loading due to the goal of optimization; thus, we may
propose and implement a new improved, optimized design
which is referred to it in the future.

References

[1] Docker -Build, Ship, and Run Any App, Anywhere, 6/2014,

http://www.docker.com/.

[2] A. Bestavros, T. Cheatham, Jr., and D. Stefanescu. Parallel Bin
packing using first fit and k-delayed best-fit heuristics. In Parallel and
Distributed Processing, 1990. Proceedings of the Second IEEE
Symposium on, 1990, pp. 501- 504.

[3] Richard E. Korf. A New Algorithm for Optimal Bin Packing. In
Proceedings of the Eighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applications of
Artificial Intelligence, pages 731–736. AAAI/IAAI, 2002.

[4] O.R. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of
fixed priority mixed-criticality task sets. In Proc. of the 8th IEEE
International Conference on Embedded Software and Systems
(ICESS), 2011.

[5] Rajdeep Dua, A Reddy Raja, Dharmesh Kakadia. Virtualization vs
Containerization to support PaaS. IEEE International Conference on
Cloud Engineering, 2014.

[6] Jeyarani, R., Ram, R. Vasanth, Nagaveni, N. Design and
Implementation of an Efficient Two-Level Scheduler for Cloud
Computing Environment. IEEE, 2010

[7] Qi Cao, Zhi-Bo Wei, Wen-Mao Gong. An Optimized Algorithm for
Task Scheduling Based on Activity Based Costing in Cloud
Computing. IEEE, 2009

[8] Selvarani, S., Sadhasivam, G.S. Improved costbased algorithm for
task scheduling in cloud computing. IEEE, 2011

[9] Mehdi, N.A., Mamat, A.; Amer, A., Abdul-Mehdi, Z.T. Minimum
Completion Time for Power-Aware Scheduling in Cloud Computing.
IEEE, 2012

[10] Luna Mingyi Zhang, Keqin Li, Yan-Qing Zhang. Green Task
Scheduling Algorithms with Speeds Optimization on Heterogeneous
Cloud Servers. IEEE, 2011

[11] Celaya, J., Arronategui, U. A Highly Scalable Decentralized
Scheduler of Tasks with Deadlines. IEEE, 2011

[12] Laiping Zhao, Yizhi Ren, Sakurai, K. A Resource Minimizing
Scheduling Algorithm with Ensuring the Deadline and Reliability in
Heterogeneous Systems. IEEE, 2011

