
 

60 

 

International Journal of Advances in Computer Science & Its Applications 
Volume 6 : Issue 2       [ISSN 2250-3765] 

Publication Date : 31 August,  2016 
 

AVL and Red-Black tree as a single balanced tree 
Lynda Bounif, Djamel Eddine Zegour 

 

 
Abstract – Since the invention of AVL trees in 1962 and 

Red-black trees in 1978, researchers were divided in two 

separated communities, AVL supporters and Red-Black ones. 

Indeed, AVL trees are commonly used for retrieval 

applications whereas Red Black trees are used in updates 

operations, so, the choice of a structure must be done firstly 

even if the operations are not known to be searches or updates. 

That is the main reason why we propose a common tree with 

the same complexity and memory space, representing both an 

AVL and a Red-Black tree, this new tree allows to gather 

together the two communities on one hand, and to expand the 

scope of AVL and Red-Black tree applications on the other 

hand. 

Keywords - Balanced trees, AVL, Red-Black, Partitioning. 

I.    Introduction 
Binary search trees are very efficient for many 

applications in computer science but have poor worst-case 

performance [1].We can make the case that when a tree is 

perfect balanced it takes a long time to traverse down it 

because it has height at most Log (n) [2], unfortunately 

keeping a perfect balance of a tree is rude and so expensive 

in practice, that’s why balanced trees are introduced, where 

costs are guaranteed to be logarithmic while ensuring that 

the tree remains almost balanced, examples of these trees 

are: AVL trees and Red-Black trees. 

Both AVL trees and Red-Black trees are very popular 
data structures. They are the most used self-balancing binary 
search trees. Indeed, they are implemented and integrated in 
many programming languages like JAVA and C++.  They 
are also used generally to implement dictionaries and 
associative arrays.  

After the invention of AVL trees, other propositions are 

made in order to improve performance or to give simplify 

algorithms: Foster gives complements studies expanded to 

the original AVL tree. [3], the second improved AVL tree is 

the generalization of AVL trees which allows unbalances up 

to a small integer [4].Another main structure is a one-sided 

height-balanced tree (OSHB) which makes a restriction on 

heights of node’s sons so that the right son never has smaller 

height than the left one, insertion and deletion algorithms are 

in O (log
2 

n) time [5] [6], after that optimum algorithms for 

OSHB tree are proposed in O (Log n) time with more 

complicated algorithms than the original AVL trees [7]. 

The original data structure of Red-Black trees is invented 
in 1972 by Rudolf Bayer [8] under the name: "Symmetric 
Binary B-trees", a few years after, a new form of the original 
structure is proposed [9] where tree balance is expressed  

 

Lynda Bounif, Djamel Eddine Zegour 

LCSI Laboratory, National School of computer science ESI (ex INI)  
Algeria. 

 

using red and black colors, this structure is difficult to 
understand and implement,  therefore many works appeared 
in order to simplify the algorithms, AA tree is a powerful 
simplification of Red-Black trees with the same 
performance and much more simplicity and simple coding 
[10], moreover several simple implementations of Red-
Black trees can be found in [11] [12]. 

Recently the majority of works in terms of AVL and 
Red-Black trees aims basically to simplify rather than 
anything else, [13] introduces a new simpler insertion and 
deletion algorithms for AVL tree by using virtual nodes and 
a brief study of AVL trees using this concept is presented in 
[14], then [15] gives a new algorithms and shows how easily 
maintain the balance factor after an updating operation.      
When it comes to Red-Black trees a revisited version has 
been proposed [16] where the code is considerably reduced 
compared to the implementation proposed in [17] where a 
complete C# implementation of Red-Black trees is presented 
including all the implementation details for insertion and 
deletion. 

     In 2015 rank balanced trees [18] is presented as a proper 
subset of Red-Black tree similar to AVL tree with best 
performances with eight rank rules, but in addition to the 
obligation to satisfy loads of inequalities corresponding to 
the number of insertions and deletion, this structure isn’t 
implemented. 

 Even though AVL trees are old, they are still strong and 
efficient for many applications, In 1985 [19] presents a new 
implementation of AVL tree without changing it and 
demonstrate the power of the basic AVL tree, also in [18] 
the authors have said that the design and analysis of 
balanced trees is still a rich area, not yet fully explored and 
“AVL tree is anything but passé”. 

AVL tree is used recently in many applications; it is used 
in cloud computing environment for task scheduling [20]. 
[21] Proposes an algorithm for indexing the keyword 
extracted from the web documents along with their context 
based on AVL tree. [22] Used them in Wireless sensor 
network to provide a security protocol. Also [23] has used 
this structure in data mining classification for a decision tree 
induction. In the other hand because of the hardness to 
understand Red Black tree it is not used us the AVL tree 
since both the structures are O (log n). It is used in a real 
time Data Addressing of Control System which reduces the 
time of the consumption of searching and updating 
operations taking place frequently and overcome the 
problem of synchronization cycle. [24] 

In this paper, section 2 introduces the famous existing 
balanced trees AVL and Red-Black trees, and then gives a 
comparison between them.  Section 3 will present our new 
data structure. Section 4 shows the benefit of our data 
structure, and finally section 5 concludes our work. 

 

http://dictionary.sensagent.com/therefore/en-en/#anchorSynonyms


 

61 

 

International Journal of Advances in Computer Science & Its Applications 
Volume 6 : Issue 2       [ISSN 2250-3765] 

Publication Date : 31 August,  2016 
 

II. Review of AVL and Red-
Black trees 

A. AVL trees 
It is the first balanced binary data structure. It's named 

after its two inventors, G.M. Adelson-Velskii and E.M. 
Landis [2]. In an AVL tree, the heights of the two child sub-
trees of any node differ by at most one, so each node alone 
in the tree represents an AVL tree, A balance factor is then 
added in each node in order to maintain the balance of the 
tree, it can takes only the values: 0, -1 or +1, so the 
balancing actions have to be done when the balance factor 
becomes 2 or -2 [25]. 

     Figure 1 gives an example of AVL tree. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Example of  an AVL tree 

B. Red-Black trees 
A red-black tree is a binary search tree with one extra bit 

of storage per node: its color, which can be either Red or 
Black, it is binary representation of a 2-3 tree. 

In a Red-Black tree, any path contains the same number 
of black nodes and does not contain two consecutive red 
nodes. A color field is then added in each node as is shown 
in figure 2. 

A binary search tree is a red-black tree if it satisfies the 
following red-black properties [26]: 

1. Every node is either red or black. 

2. The root is black. 

3. Every leaf (NIL) is black. 

4. If a node is red, then both its children are black. 

5. For each node, all paths from the node to descendant 
leaves contain the same number of black nodes. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Example of  a Red-Black tree 

C. Comparison between AVL and Red-
Black trees  

Several comparison studies of balanced trees especially 
for AVL and Red-Black tree are available; the most 
important one is [27], it takes in considerations these two 
factors: the height of the tree per operation and the number 
of rotations, and varies the rate of search, insertion and 
deletion operation, the results of these studies, shows that 
AVL tree is more efficient that Red-Black tree, especially in 
lookup-intensive applications, because AVL tree is more 
balanced than Red-Black trees, It has a height bounded by 
1.44 Log (n) where n is the number of nodes in the tree and 
log the base-two logarithm.  

AVL tree is more balanced than the Red-Black tree since 
it maximum’s height 1.44 Log (n) where in Red-Black tree 
it is 2 Log (n+1). Consequently, AVL trees perform well in 
lookup-intensive applications.  

Both AVL trees and Red-Black trees perform at most 
one restructuring in insert operation. Restructuring consists 
in one or two rotations. AVL trees perform at most Log (n) 
restructurings in delete operation while Red-Black trees 
perform at most two restructurings. Consequently, Red-
Black trees perform better than AVL trees for update-
intensive applications. 

Here after a table witch gives the important differences 
between AVL and Red-Black tree 

TABLE I. Comparison between AVL and Red-Black 

trees 

Worst case AVL Red-Black 

Height  1.44 Log (n) 2 log (n+1) 

Updates complexity O(Log (n)) O(Log (n))  

Retrieval Complexity O(Log (n)) O(Log (n)) 

Rotations for insert 2 2 

Rotations for delete Log (n) 3 

   

III.   The new data structure 

A. Description 
The new data structure is a binary search tree partitioned 

in classes. Each class is in fact a sub tree holding an AVL 
tree of height h or h-1. The root node of this sub tree is a 
class node; the other nodes are simple. Furthermore, the new 
structure is perfectly balanced considering only class nodes.  

Beside the data field, a node contains a byte to designate 
both its kind and its height. The height of a node is in fact 
the depth of the sub-tree rooted at this node inside the class 
it belongs. 

Formally, the new structure should respect theses four 
rules: 

1. Every node must be either a simple node or a class 
node. 

2. Every class must have a height equals to h-1 or h-2. 

3. Every direct path from any node to a leaf must 
contains the same number of class nodes. 

     Figure 3 shows an example of our new data structure 

when h = 3, we can see that the height of every class is 2 or 

1; moreover every direct path from the root to a leaf has 

exactly two classes.  

 

10 

4 15 

2 8 20 

-1 

0 

6 

10 

+1 

0 0 

-1 

+1 

4 15 

2 8 20 



 

62 

 

International Journal of Advances in Computer Science & Its Applications 
Volume 6 : Issue 2       [ISSN 2250-3765] 

Publication Date : 31 August,  2016 
 

It is straightforward to observe that for h = ∞ the new 
structure generates an AVL Tree. Indeed, there is only one 
class node which is the root of the class. All the others are 
simple nodes.  In practice, there is no limit for the height of 
the unique class and each path from any node to a leaf 
contains the same number of class nodes (0 or 1).  

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

Figure 3.  Representation of the new struture 

 It is also pretty straightforward to notice that for h = 2 
the new structure generates a data structure equivalent to a 
Red-Black tree. Indeed, in the definition above, by replacing 
simple nodes by red nodes and class nodes by black nodes, 
we obtain exactly the definition of a Red-Black tree. 

When the height of a class is equal to 0, this means the 
black node has not a red child.  When the height of a class is 
equal to 1, this means that the black node has one or two red 
children. All the simple nodes have 0 as height. Classes 
define mathematically a partition on the tree. In other words, 
the intersection of any two classes is empty and the union of 
all the classes gives all the items in the tree.  

In order to simplify the presentation in the figures below, 
class nodes are represented inside squares and simple nodes 
inside circles. Furthermore, classes are surrounded. 

Figure 4(a) shows the new structure as a structure 
equivalent to an AVL tree. There is only one class 
containing an AVL tree. Values under the nodes designate 
heights of nodes. 
   

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The new structure as an AVL tree 

     Figure 4(b) shows the corresponding AVL tree. Values 
under nodes designate balances.  
     Figure 5(a) shows the new structure as a structure 
equivalent to a Red-Black tree. 5(b) shows the 
corresponding Red-Black tree. Class nodes stand for black 
nodes and simple nodes for red ones. Indeed, every class 
contains an AVL tree of height 0 or 1. 
From bottom to the root, we have the following classes {80, 
75}, {95}, {10, 5}, {30} {60}, {70, 90}, {20}, {50}.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The new structure as a Red-Black tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 

2 

3 

2 

0 0 

0 1 

0 

5 25 40 80 

1 1 

0 

50 

20 70 

10 60 90 

(b) 

0 

0 

20 

30 

50 

0 0 

0 +1 

0 

5 25 40 80 

-1 

1 +1 

0 

70 

90 60 10 

(a) 

20 

10 50 

5 70 30 

70 90 

65 80 

75 

25 

1 

1 

2 

2 

1 

Figure 5. The new structure as a Red-Black tree 

 

1 0 

0 

0 

0 1 0 
0 

0 

0 1 

50 

90 

70 

95 

75 

80 
5 

10 30 60 

20 

(a) 

20 

30 

50 

5 

25 

95 80 

70 

90 60 10 

(b) 



 

63 

 

International Journal of Advances in Computer Science & Its Applications 
Volume 6 : Issue 2       [ISSN 2250-3765] 

Publication Date : 31 August,  2016 
 

B. Implementation 

The proposed tree is a balanced binary search tree, 
characterized by a byte of storage which contains both the 
kind and the height of a node; this byte represents the color 
in a Red-Black tree and the balance in an AVL tree. Thus, 
the first bit defines its kind (simple or class); the seven 
others bits define its height.  

We can notice that when the new structure generates an 
AVL tree, there is a unique class that can contain a binary 
search tree of height 2

7
, i.e. a class with 2

128
 elements. 

IV.   Benefit of the new structure 
Our new structure can be applied in many real 

applications where AVL or Red-Black trees are used since it 
is equivalent to both of them, it can be a very efficient 
structure for real time systems, in this context the authors of 
[28] demonstrates the usefulness of using both AVL and 
Red-Black trees in the priority queue for Dynamic Data-
Driven Application Systems: when the system anticipates 
intensive search operations the system will convert the tree 
to AVL, when the system anticipates intensive updates 
operations it convert the tree to Red-black. 

V. Conclusion 
Balanced binary search trees are pertinent data structure 

for many applications in computer science. In this paper we 
presented a unique balanced tree for both AVL and Red-
Black trees. A single parameter allows switching from one 
structure to another. This is accomplished through a binary 
search tree partitioned into classes that are in fact AVL sub-
trees. When the height of the class is infinite, it is an AVL 
tree. When the height is 0 or 1, it is a structure equivalent to 
a Red-Black tree. The presented tree is simple and clear to 
understand and implement which allows expanding 
applications. 

Acknowledgment  
A major expression of thanks and gratitude must go to 

my supervisor Prof. Djamel Eddine Zegour for the patient 
guidance, encouragement and pertinent advices. 

References 

 
[1] Robert. Sedgewick and Addison. Wesley. “Algorithms in Java, Parts 

1-4. Professional. 768 pages”. 23 juil. 2002. 

[2] AdelsonVelskii, M., and Evgenii Mikhailovich Landis. “An algorithm 
for the organization of information”. Dokl. Akad. Nauk SSSR 146, 
pp. 263-266. English translation in Soviet Math. Dokl. 3, pp. 1259-
1262, 1962. 

[3] Foster, Caxton C. "Information retrieval: information storage and 
retrieval using AVL trees." Proceedings of the 1965 20th national 
conference. ACM, 1965.  

[4] Foster, Caxton C. "A generalization of AVL trees." Communications 
of the ACM 16.8 (1973): 513-517. 

[5] Hirschberg, Daniel S. "An insertion technique for one-sided height-
balanced trees." Communications of the ACM 19.8 (1976): 471-473. 

[6] Kosaraju, S. Rao. "Insertions and deletions in one-sided height-
balanced trees." Communications of the ACM 21.3 (1978): 226-227.  

[7] Räihä, Kari-Jouko, and Stuart H. Zweben. "An optimal insertion 
algorithm for one-sided height-balanced binary search 
trees." Communications of the ACM22.9 (1979): 508-512.  

[8]  Bayer, R [1972] “Symmetric Binary B-Trees”: Data structure and 
maintenance algorithms. Acta Informatica 1(4):290-306, 1972. 

[9] Guibas, Leo J., and Robert Sedgewick. "A dichromatic framework for 
balanced trees." 19th Annual Symposium on Foundations of Computer 
Science. IEEE, 1978. 

[10] Andersson, Arne. "Balanced search trees made simple." Algorithms 
and Data Structures. Springer Berlin Heidelberg, 1993. 60-71. 

[11] Okasaki, Chris. Purely functional data structures. Cambridge 
University Press, 1999. 

[12] Kahrs, Stefan. "Red-black trees with types." Journal of functional 
programming11.04 (2001): 425-432. 

[13] Tripathi, Rajeev R. Kumar. "Balancing of AVL tree using virtual 
node." RN 10 (2010): 20. 

[14] Chauhan, Shivani, et al. "A brief study of balancing of AVL 
tree." International Journal of Research 1.11 (2014): 406-408. 

[15] Goutam Mondal .“A New Way of Inserting and Deleting the Node To 
and From the AVL search tree” International Journal of Advance 
Research in Computer Science and Management Studies”,2014: 191-
194. 

[16] Sedgewick, Robert. "Left-leaning red-black trees." Dagstuhl 
Workshop on Data Structures. 2008. 

[17] Wiener, Richard. "Generic Red-Black Tree and its C# 
Implementation." Journal of Object Technology 4.2 (2005): 59-80. 

[18] Haeupler, Bernhard, Siddhartha Sen, and Robert E. Tarjan. "Rank-
balanced trees." ACM Transactions on Algorithms (TALG) 11.4 
(2015): 30. 

[19] Tsakalidis, Athanasios K. "AVL-trees for localized 
search." Information and Control 67.1 (1985): 173-194. 

[20] Chiu, Chuan-Feng, et al. "Task Scheduling Based on Load 
Approximation in Cloud Computing Environment." Future 
Information Technology. Springer Berlin Heidelberg, 2014. 803-808. 

[21] Tyagi, Nidhi, Rahul Rishi, and R. P. Aggarwal. "Context based Web 
Indexing for Storage of Relevant Web Pages." International Journal 
of Computer Applications Vol40 (2012). 

[22] Boumerzoug, Hayette, Boucif Amar Bensaber, and Ismail Biskri. "A 
key management method based on an avl tree and ecc cryptography 
for wireless sensor networks." Proceedings of the 7th ACM 
symposium on QoS and security for wireless and mobile networks. 
ACM, 2011. 

[23] Bhukya, Devi Prasad, and S. Ramachandram. "Decision tree 
induction: an approach for data classification using AVL-
tree." International Journal of Computer and Electrical 
Engineering 2.4 (2010): 660-665. 

[24] Sicheng, An, et al. "Advanced Red-Black Algorithm for Real-Time 
Data Addressing of Control System." Sensors & Transducers (1726-
5479) 178.9 (2014).  

[25] Brijendra Kumar Joshi, “Data Structures and Algorithms in C++”, 
Tata McGraw-Hill Education, 2010, 360 pages 

[26] Jeff Edmonds, How to think about algorithms, Cambridge University 
Press,2008, USA 

[27] Štrbac-Savić, Svetlana, and Milo Tomašević. "Comparative 
performance evaluation of the AVL and red-black trees." Proceedings 
of the Fifth Balkan Conference in Informatics. ACM, 2012. 

[28] Ng, Chetan Kumar, et al. "Improving system predictability and 
performance via hardware accelerated data structures." Procedia 
Computer Science 9 (2012): 1197-1205. 

 

 

 

 

 

 


