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Abstract— This paper describes a comparison of control 

system design to Philips glass furnace. The first stage 

considers the application of system identification 

techniques to obtain models using experimental data. 

Several models were identified, wherein the one picked 

up for control design has the largest level of fitness. In 

the second stage a set of improved control methods are 

implemented to design controllers based on non-adaptive 

(including LQR, LQGR, H2, Hoo) and adaptive (including 

MRAC, L1) methods. Simulation studies were performed 

and evaluated. 

Keywords— Philips glass furnace, identification, 

control design, adaptive methods, non-adaptive methods.  

I.  Introduction 
A Philips glass furnace considered as a chemical reactor, 

where the raw materials are burnt in a confined space 

surrounded by refractory, at high temperatures of 1400 - 

1600 degree C to produce molten glass, see Fig. 1. The 

melting area of a glass furnace consists of a molten glass 

bath and a combustion chamber. The walls, floor and the 

roof of the melting area are made up of refractory (which is 

capable of handling high temperatures). The furnace 

operation involves combustion, heat transfer, batch melting, 

glass flow patterns. [1] – [4]. In the literature, there are 

several methods for identification and/or control of different 

types of glass furnace [8]–[20]. The combined identification 

and control design based on empirical data for glass furnace 

has received little attention. 

 

In this paper, we develop a two-stage approach to the 

control design of Philips glass furnace. In the first stage, a 

mathematical model of is identified using empirical data. 

This model is then fed to the control design pool of methods, 

which consist of non-adaptive (including LQR, LQGR, H2, 

Hoo) and adaptive (including MRAC, L1) methods. By 

extensive Matlab-based simulation studies, the performance 

of the design methods is compared and evaluated. 

II. Identification Stage  
Using the DaISy (Database for the Identification of 

Systems; SISTA’s Identification Database), a data set 

consists of 1247 samples of three inputs and six outputs. 

The inputs represent the heating and cooling inputs to the 

furnace and, all the six outputs represent the outputs from 

temperature sensors in a cross section of the furnace. 

There are two types of modeling techniques that are 
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                   Fig. 1. Schematic of a glass furnace 

currently applied for modeling of glass manufacturing 

processes: Black-box method and First-principles-based 

method. In the first method, a mathematical model 

of the process is obtained from the experimental input-

output data of the process by applying identification 

techniques. Process identification techniques result in 

models that allow very fast simulation of process dynamics 

[2], [3]. In the second method, a mathematical model is 

derived from basic physical laws utilizing computational 

fluid dynamics (CFD) techniques. In this paper, we follow 

the first method using the data in Figs 2–4. 

 

Using parametric identification techniques, we obtain 

state-space models that represent dynamical models of the 

glass furnace from the on-line data. The basic state-space 
model in innovations form can be written as: 

 
Where x (t) is the state vector, u(t) is the input vector, e(t) is 

the noise vector and y(t) is the output vector. In addition, A 

is the state matrix, B is the input matrix, C is the output 

matrix, D is the feedthrough matrix, and K is the matrix 

representing the noise/disturbance characteristics of state 

space models:  Subspace method (N4SID and Prediction 

Error Method (PEM) [7].  The numerical values of matrices 

are omitted for space limitation. A comparison between the 

n4sid model and the pem model obtained using one data set 

is depicted in Fig. 5, whereas a comparison of the fitness of 

n4sid models and pem models using different sets of data for 

output y1 is presented in Fig. 6. 
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Fig 2.  Input data 

                                
Fig 3.  Output data I 

 

Fig 4.  Output data II 

 

 

 

 
Fig 5.  Fitness comparison of n4sid model and pem model obtained 

from the estimation data 1-1100 
 

 
Fig 6.  Fitness comparison of different n4sid models and pem 

models 

III. Control Design Stage 
The problem now is to determine the controller to be applied 

to the identified Philips glass furnace model to achieve a 

desired steady-state temperate profile. The methods of 

control design considered in the present work is divided into 

two distinct categories: non-adaptive category including 

linear-quadratic regulator (LQR), linear-quadratic Gaussian 

regulator (LQGR), optimal H2 and optimal Hoo) and adaptive 

category including MRAC, L1 methods. The theory of these 

methods omitted due to space limitations  

A. Non-Adaptive Control Design  
In this category of control design methods, we considered 

 Linear quadratic regulator (LQR) 

 Linear quadratic Gaussian regulator (LQGR) 

 H2 and Hoo Control 

In simulation, we used Matlab and Simulink. Optimal and 

robust controllers are designed for the identified glass 

furnace model. The output trajectories are shown in Figs 7–

10. The following observations are deduced from the 

simulation results:  

 With H2 controller, the overshoot in the output and 

the settling time are relatively less.  

 The output experiences a large overshoot with Hoo 

               controller. 

 The response of LQR and LQGR is exactly similar 

and is better than the Hoo controller response. 

Among the four non-adaptive controllers, it appears that 
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H2 controller provides best closed-loop performance for the 

identified glass furnace model. 

 

Fig 7.  LQR: Output trajectories for open loop and closed-loop 
systems 

  

Fig 8.  LQGR: Output trajectories for open loop and closed-loop 
systems 

 

Fig 9. H2: Output trajectories for open loop and closed-loop 
systems 

B. Adaptive Control Design  
Adaptive controller is a combination of control law (based 

on the known parameters) and online parameter estimation 

(through which unknown parameters are estimated at each 

instant) [5]. This online parameter estimator is known as 

adaptive law or update law, or adjustment mechanism. 

Based on this way of combining the control law and the 

adaptation law, the adaptive control is categorized into two 

types as direct adaptive control and indirect adaptive 

control. 

 
 Fig 10. Hoo: Output trajectories for open loop and closed-loop 

systems 

In the sequel, we consider the direct model-reference 

adaptive control (MRAC), and the L1 adaptive control, 

shown in Figs. 11-12 and their implementation on the 

identified glass furnace model. We recall in MRAC that, the 

use of high adaptation gain results in high gain feedback 

control which further results in high-frequency oscillations 

in the control signal and reduced tolerance to time delays. 

Proper tuning (selection of appropriate adaptive gain) of 

MRAC is a difficult task. The L1 adaptive control method 

considers uniform performance bounds on the L1-norms of 

the errors in model states and control signals. As these error 

norms are (uniformly) inversely proportional to the square 

root of the adaptation gain, this method enables the use of 

high adaptation gains. The simulation is based on the theory 

in [5], [6]. The advantages of using the L1 adaptive 

controller is illustrated by comparing the simulation results 

of L1 adaptive control and MRAC. 

 
The L1 adaptive control architecture consists of direct 

MRAC and a bandwidth-limited filter as shown in figure 

12. The filter is used for the filtering of control signal in 

order to avoid high frequencies in the control signal and for 

shaping the nominal response. In adaptive control, though 

the increase in adaptation rate improves the tracking 

performance, it degrades the robustness of the controller. 

Hence, the adaptation rate is the key to tradeoff between 

performance and robustness. L1 adaptive control theory 

deals with this problem by setting up an architecture that 

separates the adaptation and robustness and thereby 

guarantees the transient performance and robustness in the 

presence of fast adaptation, without introducing or enforcing 

persistence of excitation, without any gain scheduling in the 

controller parameters, and without resorting to high-gain 

feedback [6]. 

The simulation results of L1 adaptive control are shown in 

Fig. 13 for the controlled output y2 for various bandwidths 

of the low-pass filter C(s)  = c/s + c of the L1 adaptive 

controller. The best response is obtained with a bandwidth 
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c = 0.02 rad/sec. From the plots shown in this figure, it is 

observed that for bandwidths higher than c = 0.02 rad/sec, 

as the bandwidth increases, the overshoot in the response of 

the system also increases and for bandwidths below this 

value the response is sluggish. 

 

 

Fig 11. Direct MRAC with state predictor 

 

Fig 12. Closed-loop L1 adaptive system 

 

Fig 13. Output y2 with L1 adaptive control at various filter 
bandwidths 

Fig. 14 shows the plots of control inputs (unfiltered and 

filtered) of the L1 adaptive controller with the parameters c 

= 0.02 rad/sec, and  = 100. A step input of magnitude of 1 
unit is given as a reference signal. The output trajectories of 
this closed-loop system are presented in Fig. 15. 

 
    Fig 14. L1 adaptive system: control input trajectories 

 

    Fig 15. L1 adaptive system: output trajectories 

 

                    Fig 16. L1 adaptive vs MRAC: control input u1 

 

                    Fig 17. L1 adaptive vs MRAC: control input u2 
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Direct (MRAC) with state predictor has also been applied to 

this glass furnace model. The closed-loop responses of 

MRAC system and L1 adaptive system illustrated by control 

input u1 and output y2 in Figs. 16 and 17 respectively. It is 

seen that the system with L1 adaptive controller has a better 

transient response than the system with MRAC. 

 

IV. Conclusions  
This paper has addressed a two-stage identification-control 

approach for a Philips glass furnace. Identification of the 

glass furnace system was performed using prediction error 

and N4SID methods. The estimated models were validated 

and their model fitness was compared. On comparison, it is 

found that the PEM model has the best fitness. The optimal 

and robust non-adaptive controllers (LQR. LQGR, H2 and 

Hoo) have been designed and applied to the identified glass 

furnace model. Implementing these controllers in closed-

loop with the glass furnace model resulted in satisfying 

results. In this regard, H2 controller has provided the best 

closed-loop performance. Model-reference adaptive control 

(MRAC) and L1 adaptive control methods were considered 

and it was found that the latter method has provided results 

with good transient response and good robustness 

characteristics. 
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