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Abstract— This paper encompasses the longitudinal dynamics 

of a Beechcraft King Air 350 aircraft with atmospheric 

perturbation. Longitudinal simulations with and without 

integrator states are also discussed. The Linear Quadratic 

Regulator (LQR) technique showed robustness and it is 

possible to correct the error in most of the situations. Matlab- 

Simulink is used as a tool for simulation work.  
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I. Introduction  
This project presents a study on dynamic systems and its 

control techniques. The vehicle used in this project was the 

Beechcraft King Air 350 aircraft shown in figure (1). The 

objective of this work is to design a controller which offers 

good disturbance rejection and tracking properties. 

Beechcraft King Air 350 data sheet specifications such as all 

the flight and actuators specifications, the inertia and wing 

data’s and the aerodynamics derivatives are given below. 

The following specifications are used for 

MATLAB/SIMULINK for simulations. Beech 350:Flight 

condition; h=9753m, M=0.58, gg0 = 0.00deg, aa0=1.29deg, 

u0=338.1kt, flapa=0 deg Throttle: tho=98%, Teng = 0.91s; 

demax =+ 16/-15 deg, dmax=18deg, drmax=30deg Inertial 

data.:- m=6177Kg, Ix=66942kgm
2 

Iy= 67819kgm
2
, 

Iz=94947kgm
2 

,Ixz=3300kgm
2
. Wingdata:S=28.8m

2 
 

b=17.424m,c=1.651m, aamax=C=15.18 deg. Aerodynamic 

coefficients in SI unites):Xu= - 0.0161, Xw=0.0165, Zu= -

0.1134, Zw=-1.0541,Zwp =-0.0035, Zq = -1.4994, 

mu=0.0000, mw= -0.0729, mq= -0.2096,mwp= -0.0004, 

ybb= -17.2335, lbb=      -4.7286, nbb=5.0008, yp=0.0000, 

lp=-8981, np= - 0.0517,yr = 0.5216, l r=0.3549, nr=-2085, 

xde=0.000, zde=-11.719,mde= -5.846, xdf= - -2.412, zdf=-

20.276, mdf= - 0.453,xdt-1.335, mdt=-0.019, Lda=8.006, 

Nda=0.000, ydr = -2.750, Ldr = -0.733, Ndr = -1.717, 

9161.300 u , g = 9.8  1134.0 uZMMu  , 

0541.1  ZMM  , 9337.1730  UMMq 

8553.5 EwE ZMM   , 019.0 TwT ZMM    

The paper is organized as follows, in section II, a review of 

the control theory used in this work is presented. Section III 

introduces the aircraft control theory and main concepts of 

this work. Longitudinal motion simulations are shown in 

section IV.                                                                                                                    
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Fig 1: Beechcraft King Air 350 

Conclusions, the results of SIMULINK simulations and the 

designed controller actions are shown in section V.           

II. Control Theory  
The systems dynamics can then be expressed by the 

following general expression for a non-autonomous (time-

varying), nonlinear system of order n, with m inputs and p 

outputs: 

),,( tuxFx                                         (1) 

),,( tuxhy                                          (2) 

  The state x is, in n-dimensional space. The time instant 

t is a scalar. The control u is a m-dimensional space The 

output y is a p-dimensional space. Obviously x, y and 

probably u are functions of time, but the variable t is 

explicitly used to represent the time-dependency of certain 

system parameters that affect the dynamics (such as mass, 

temperature or general disturbances); if the systems 

parameters remain unchanged, then it is said to be 

autonomous, and t does not appear on the equations. For this 

work, the variable t will not appear on the equations, under 

the assumption that even if those parameters change, those 

changes are slow enough that their effect on the dynamics 

will be minimal. Usually the output of a system doesn’t vary 

instantly with its control signal, being only a function of the 

state vector (possibly including a selection of some state 

variables):   y = h(x)               (3) However, the simplest 

class to analyze comprehends the LTI (Linear and Time-

Invariant) systems, with no dependency on time and only 

linear relations on the dynamics, so that they can be 

represented by the equation BuAxx                   (4) 

DuCxy                                                              (5) 

Where A, B, C and D are constant matrices, their dimensions 

being respectively: n×n, n×m, p×n and p×m. This type of 



 

27 

 

International Journal of Advances in Computer Science & Its Applications 
Volume 6 : Issue 2       [ISSN 2250-3765] 

Publication Date : 31 August,  2016 
 

dynamical systems has been thoroughly studied and its 

properties permit an easy understanding of the system, as 

well as practical ways to design a controller given the 

desired performance [1]. The systems that we analyzed 

describes the motion equations of the aircraft (longitudinal 

dynamics) with wings level and rectilinear flight. Those 

equations are linearized around an equilibrium point in 

absents of perturbations or noise [2]. 

III. Aircraft Dynamics 
The mathematical model of longitudinal dynamics with 

and without atmospheric perturbations, are explained in this 
section.      

A. Longitudinal dynamics model 
The system matrix and input matrix for the longitudinal 

motion of aircraft (4) in state space with usual notations 

are given by. 
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With  Thqwux  and  TTEu   

This equations are subject to change since these are related 

to without integrator states approach. Another approach will 

be needed to satisfy the control objectives. So, the second 

approach used (with integrator states) has the following 

formulation: A=                                                                                
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(8) 

and input matrix:  
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with  T

hdhuduhqwux    and 

 TTEu   

B. Atmospheric perturbations  
In this work a mathematical model is used to simulate 

atmospheric perturbations. The mathematical model shown 

in equation (6) and (7) modified [1] and [3] and the final 

form of the state space system is given in (10) and (11) 

dEBuAxx          (10) 

nFDuCxy          (11) 

In which the vector d is related to the non- controlled 

disturbances and the vector n is related to the existing noise 

in the system’s measurements. The matrixes E and F are still 

constants, due to the assumptions made, which tells that the 

system is linearized around an equilibrium point in steady-

state flight. In case of an aircraft system, the alterations 

provided by the introduction of the air speed changes in the 

aerodynamic forces expressions origins the appearance of an 

additional term in the state equations, already mentioned and 

showed in (11). With the term corresponds to the input of 

the atmospheric perturbations in the aircraft motion 

dynamics for the longitudinal motion, the new state-space 

system, is as follows: In a particular case of this work, F 

matrix entrances are all zeros (noise in measurements 

signals negligible) and the E matrix is implemented directly 

from the A matrix and suffers the influence of the inputs 

provided by the Dryden model to atmospheric perturbations. 
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The aircraft speed and the perturbations changes itself, 

in the space and time, obligates the consideration of 

continuous distributions of perturbations, based on 

statistical analysis. This statistical analysis provides the 

power spectrum of the perturbation and an approximate 

model of its dynamics (it is possible then to implement 

this model in simulations). In aeronautics one of the 
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models used is the Dryden model, which has the 

following spectrum,  

222

2

)1(

12




u

u

uu
L

L


            (13) 

Where L is the scale length (altitude dependent) and σ is 

a constant that describes the perturbation intensity.  

IV. Simulations  
This section presents longitudinal motion simulations 

without integrator states with integrator states and with gust 

disturbances.  

A. Longitudinal simulations  
For longitudinal motion the controller type used is the LQR. 

Feedback control of system outputs is a useful tool to obtain 

the needed corrections in the system behavior. It is 

necessary to define a method for predicting the 

dimensioning of the controller characteristics and, by 

inherency, the feedback system .Modern control theory is a 

tool with those characteristics that is obtained through a 

performance index function in which its minimization 

origins only one optimal controller. The performance index 

function usually has the form dttuxLJ
t

t
2

1

),,(    (14)  

The optimization with the dynamics mentioned in (6) brings 

one solution u
0 

which minimizes the value of J. Between 

several possibilities for the performance index function there 

is the usual case of the null reference and semi-infinity time 

interval. This case corresponds to the linear quadratic 

regulator:    dtRuuQxxJ 



0

)''(
2

1
                (15)    

  where the matrixes Q and R are quadratic, symmetrical, Q 

is semi-definite positive and R is positive definite. This 

solution gives the optimal solution in its linear form:                                                                                          

u
0 
= −Kx                                                             (16) 

We can say that minimizing the performance index function 

with the system dynamics restriction (refereed in eq. (6) 

results from the resolution of the of Riccati equation (no 

time depended in this case):                                                  

01   QPBPBRPAPA TT                    (17)     

This equation when solved for P (constant matrix, 

symmetrical, positive semi-definite ) origins the feedback 

gains matrix:  PBRK T1   (18) This feedback matrix 

K can be computed in the feedback loop, or in the servo 

loop. In the first case we guarantee the stability of the 

system. In the second case we can control the error between 

the value of the state variables and its references 

     

B. Without integrator states  
In this case it was used the longitudinal state space linear 

model obtained in (8). The system matrixes used have the 

follow numerical values shown in section I and the 

corresponding open loop poles are 

Eigenvalue Damping     Freq. (rad/s) 

   

−0.00839 ± 0.0787i 0.106 0.0792 

0.00 −1.00 0.00 

−0.666 ± 3.53i 0.186 3.59 

 

Knowing the physics of characteristics (frequency and 

damping) of the aircraft, it is possible to distinguish the two 

modes of the longitudinal motion (phugoid and short period) 

[3,4,5]. This can be possible due to the difference between 

both natural frequencies and short period natural frequency a 

slower one. Analysis of these elements verifies the open 

loop model stability. The aircraft structure is the 

conventional one (two pair of conjugate complex poles). 

The vehicle is class II type (weight < 30000kg) and flights 

in  B category phase flight (non terminal flight phase, with 

moderate maneuvers and trajectory control). This 

characteristics are obtained through [6] and [7]. Finally, it is 

possible to achieve the following criterions: Phugoid: ξ = 

0.106 > 0.04 - Level I. Short period: ξ = 0.186 ± 0.1 < ξ - 

Level III Modes separation: 1 - Modes 

well separated. Despite this acceptable characteristics, this 

work implemented a controller for the puropose of reference 

u and h tracking. Here we have used the LQR  with the 

following characteristics: 
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Which provides the gain matrix K: 
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C. With Integrator states 
The state space formulation has the following numerical 

values, according to ( 9) and (10): The poles at the 

origin are related to the altitude equation and the 

integrator states (h,  udu  and  hdh  equations, 

respectively). 
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The phugoid mode has a lower damping value due to the 

weak aerodynamic drag. The lift-over-drag ratio (L/D) is 

then high, this situation benefits the controller action and the 

profile mission objectives of the aircraft. It is observed that 

this system is marginally stable. To correct this problem an 

LQR controller was implemented. The LQR (linear 

quadratic regulator) ensures the augmentation of 

stabilization and system control through a modern control 

solution with a feedback of all system states, to both system 

inputs (elevator and propulsion force). As mentioned before, 

this implementation is based on the theory of section III. 

The LQR used has the following characteristics  
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Consequently, the closed loop system poles are: 

Eigenvalue Damping   freq.(rad/s)      

  −0.445 1.00 0.445 

−0.997 ± 1.02i 0.699 1.43 

   

−3.55 ± 1.93i 0.879 4.04 

−23.4 ± 21.8i 0.732                     32 

It is important to make some references related to the 

choice of the Q and R matrixes of the LQR implementation. 

For the first matrix the weights were chosen according to the 

importance of each state variable. This is the reason for the 

entrances related to the altitude and altitude integration 

having a bigger value than the other entries. For the R 

matrix, according to [1] it is possible to conclude that the 

weight value related to the elevator input has one more value 

order (as 10 has one more value order than 1, for example) 

comparing with the weight value of the propulsion input.  

SIMULINK diagram for Longitudinal dynamics with and 

without integrators are designed. Also SIMULINK models 

of  Longitudinal dynamics  with atmospheric perturbations 

are also developed.  

D. Atmospheric perturbations  
This section shows the simulations based on equations 

(10) and (12) the new state    space system has the following 
numerical    values:    
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v. Conclusions  
This section gives the results obtained, based on state 

space system without integrator states u reference and h 

reference are shown in figures 2 and 3. From figure 4 and 5 

respectively u tracking error and h tracking error without 

integrators. it is observed that the steady state error is non 

zero. Hence it is to be reformulated according to the theory 

explained in the previous section with integrator states. The 

results obtained, based on new state space system with 

integrator states are shown in figures 6 and 7. The results 

show zero steady state error, so it is concluded that the 

controller works perfectly in its objectives (the reference 

tracking). At the same time, the spikes observed are due to 

the changes in u and h references. The other variables of the 

system gave good results too. The pitch rate (q), for 

example, becomes zero due to the controller action (as 

necessary); the ascend velocity (w) and pitch angle (θ) 

stabilize over fixed values, not showing oscillations beside 

the ones produced by u and h references changes, which can 

be proved by figures 8 and 9. 

 

Here the simulation is carried out in the presence of 

atmospheric perturbation, results show that the controller 

still works perfectly in its objectives. Figures 10 and 11 

depict the error between the variable output and its 

reference. Comparing with the last results (figures 8 and 9), 

these figures show the presence of tracking error all over the 

simulation time. This is due to the motion turbulence 

existence provided to the system implemented with 

atmospheric perturbations. As given in figure 10, the 

tracking is still a reality, with the controller always working 
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to get a null tracking error. The existence of bigger spikes 

values is with turbulence factors. The new achievements by 

the controller in this new system conditions are the ones 

showed. Finally figure 12 with the two signals (in this 

example altitude h and reference altitude href) confirm the 

achievement of  objectives of  the controller action 
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              Fig7: h tracking error with integrators 
 

 

 
                                                    

           Fig 8: q pitch rate - with integrator                                         

 

 
 

 Fig 9: θ pitch angle - with integrator 

          
  Fig10: u tracking error - with atmospheric perturbations              

 

 
Fig 11: h tracking error - with atmospheric perturbations 

 

Fig12 h tracking (detailed) with atmospheric perturbations 
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