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Abstract - In recent years, computer systems belonging to large 

companies, governments as well as personal computers have been 

experiencing an increasing wave of attacks that disrupt their 

normal operation or leak sensitive data. In this context, this 

paper presents a hardware-based approach (here namely a 

watchdog connected to the processor bus) which aims at detecting 

and recovering the system from stack smashing buffer overflow 

attack. Compared to existing approaches, the proposed technique 

does not need application code recompilation or use of any kind 

of supervisor software (e.g., an Operating System - OS) to 

manage memory usage. To validate the approach, a case-study 

based on the LEON3 softcore processor and benchmark test 

codes have been implemented. Experimental results indicate that 

this approach is able to detect and recover from an intrusion 

tentative for 100% of the test cases, while yielding low area 

overhead, negligible attack detection latency and processor 

performance degradation.  
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I. Introduction 

The need to include security mechanisms in electronic 

devices has dramatically grown with the widespread use of 

such devices in our daily life. In this scenario this work 

presents a hardware-based approach (here defined as a 

watchdog connected to the processor bus) which aims at 

detecting and recovering the system from stack smashing 

buffer overflow attack. The detection is done when the 

execution program returns from a function call. In the 

sequence, this work proposes a way to securely recover the 

system from the intrusion detection event. The preliminaries 

of this work were first published in [1], where the detection 

mechanism was first introduced. The present paper represents 

a continuation of this work, by introducing the recovery 

process, after the intrusion detection event by the watchdog. 

II. Preliminaries 

a) Stack Smashing Buffer Overflow Attack: 

Buffer overflow attacks exploit a lack of bounds checking 

on the size of input being stored in a buffer array in memory. 

By writing data past the end of an allocated array, the attacker 

can make arbitrary changes to program state stored adjacent to  
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the array. By far, the most common data structure to corrupt in 

this fashion is the stack, called a “stack smashing” or “buffer 

overflow” attack. 

Many C programs have buffer overflow vulnerabilities, 

both because the C language lacks array bounds checking, and 

because the culture of C programmers encourages a 

performance-oriented style that avoids error checking where 

possible [2]. 

The common form of buffer overflow exploitation is to 

attack buffers allocated on the stack. Stack smashing attacks 

strive to achieve two mutually dependent goals: 

i) Inject Attack Code: The attacker provides an input string 

that is actually an executable binary code native to the 

machine being attacked. Typically, this code is simple and 

does something similar to exec(“sh”) to produce a root shell. 

ii) Change the Return Address: There is a stack frame for a 

currently active function above the buffer being attacked on 

the stack. The buffer overflow changes the return address to 

point to the attack code. When the function returns, instead of 

jumping back to where it was called from, it jumps into the 

attack code. 

b) Related Works: 

Several efficient software-based as well as hardware-based 
dynamic integrity checking techniques [3,4] have been 
proposed in the literature. However, software-based techniques 
suffer from performance overheads as high as 60%, while 
hardware-based approaches result in average overheads of 
about 18% [5]. These are daunting numbers. Additionally, 
some of these approaches [5,6] need application code 
recompilation to compute specific information (hashes of 
application program’s instruction addresses and opcodes) that 
is later used at runtime to detect attacks.  

III.  The Proposed approach 

This work proposes two assumptions (see Fig. 1): (1) a 

watchdog to detect malicious data overwritten in the return 

addresses saved in the program stack, and (2) a method to 

recover the system from the return address overwritten 

detection. The overwritten activity occurs in buffer overflow 

conditions and could be the tentative of a stack smashing 

attack. So, this approach is able to detect a tentative of attack 

and recover the system from this condition into a safe point 

(by means of a checkpoint previously saved during normal 

execution). 
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Fig. 1. General architecture of the proposed approach. 
 

The proposed watchdog is based on two specific structures: 
(a) the logic implemented in hardware to detect the return 
address overwritten and (b) the memory block added to the 
Watchdog architecture to store return addresses of system calls. 
In more detail, this approach works as follows:  

 Every time a call (“CALL”) instruction is executed by 
the processor, the return address is stored in the original stack 
(typically a memory address or a dedicated register inside the 
processor) and in the Watchdog Memory Block; 

 Every time a return instruction is executed, the 
Watchdog performs a comparison between the return address 
stored in the original stack and the return address stored in the 
Watchdog Memory Block. In this case, one of these two 
situations may occur: 

o In case of a positive comparison, the fault-free 
execution of the code continues and no action is taken by the 
Watchdog; 

o In case of a negative comparison, the Watchdog raises 
a signal to the Recovery Mechanism. 

Therefore, in case of occurring an overflow on the original 
stack that corrupts the current return address, such address 
remains unchanged in the Watchdog Memory Block. This 
condition guarantees the detection of tentative of intrusion by 
comparing the return address overwritten in the original stack 
against the (fault-free) return address stored in the Watchdog 
Memory Block. In the sequence, the Watchdog does not allow 
the system to branch to any possible malicious code pointed by 
the corrupted return address and then, raises a signal to trigger 
the recovery process. 

Starting from the signal generated by the Watchdog, the 
recovery algorithm rollbacks the processor to the last safe-
checkpoint generated previously in run-time. This safe point is 
the correct return address of the function CALL whose “RET” 
address was object of attack. When the rollback process is 
complete, the Watchdog releases the processor to run again 
normally. 

Given the above exposed, the proposed approach presents 
the following features and advantages compared to the existing 
techniques: 

 It does not need application code recompilation to 

compute specific information (hashes of application program’s 

instruction addresses and opcodes) that is later used at runtime 

to detect attacks. 

 It is not based on any software component and 

considering that the Watchdog works in parallel with processor 

execution, the proposed approach does not incur in 

performance overhead.  

 The watchdog detection mechanism requires a low 

area overhead. 

 Extremely low attack detection latency, since the 

Watchdog works in parallel with the processor execution. 

a) Attack Detection 

As observed in Fig. 1, the Watchdog monitors some 

internal signals from the Execution Stage of the processor 

pipeline. Such signals are: 

o The “OpCode” of the instruction that is leaving the Execution 

Stage of the pipeline; 

o The bit “annul”, whose function is to indicate if the instruction 

that is leaving the Execution Stage of the pipeline will be actually 

executed by the processor or it will be discarded due to 

speculative execution. 

o The “Program Counter” (PC), which is saved into the 

ShadowStack in case a function “CALL” is performed. After the 

function execution, the PC is defined as the return address that 

will be used to return processor control to the point where the 

application was interrupted.  

o The “jmp_addr” signal, which points to the function return 

address that will be executed. 

Fig. 2 shows the internal blocks of the Watchdog. As 

detailed above, it grabs a set of 4 specific pipeline internal 

signals. The Instruction Decoder Block uses the instruction 

“OpCode” and the “annul” signal to decode and check if the 

current instruction will be executed. If the Instruction Decoder 

Block decodes a function “CALL”, it will send the “icall” 

signal to the ShadowMem Control Block. In this case, the 

ShadowMem Control Block will save the current PC retrieved 

from the pipeline (“Curr_PC” signal) into the ShadowMem 

Block. Instead, if the Instruction Decoder Block decodes a 

function “RET”, it will send the “ijmp” signal to the 

ShadowMem Control Block that will recover from the 

ShadowMem Block the last PC saved therein and send it (in 

conjunction with a “compare” signal) to the Decision Block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Internal blocks of the Watchdog. 

 

When the Decision Block receives the “compare” signal 

and the “last PC”, it performs a comparison between this 

value (the “last PC”) and the “jmp_addr” retrieved from the 

pipeline. If this comparison returns true, no action is required. 

Nevertheless, if the comparison returns false, the “last PC” 
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and an “exception” signal are sent to the Exception Routine 

Block. 

When the Exception Routine Block receives the 

“exception” signal, it raises a signal to the Recovery 

Mechanism Block to trigger the recovery process. At this 

point, the recovery process is based on a dedicated algorithm 

that rolls back the processor to the last safe-checkpoint labeled 

by the Recovery Mechanism Block, concurrently with 

processor execution. This checkpoint is the correct return 

address of the function CALL whose “RET” address was 

object of attack). When the rollback process is complete, the 

Watchdog releases the processor to run again normally. 

b) Attack Recovery 

The recovery process can be divided into two steps: the 

Regular Execution and the Recovery Process itself. 

b.1) Regular Execution (before attack detection): 

When the program is running on the main function, the 

execution data is saved in the original memory (as in any 

conventional processor) and in the Secondary Memory settled 

in the Recovery Mechanism Block. When processor execution 

leaves the main function by means of a function CALL: 

 The processor continues saving the program data into 

the original memory. 

 The Watchdog stops saving data in the Secondary 

Memory and starts saving program data on the 

Recovery Memory which is also sitting in the 

Recovery Mechanism Block. The Watchdog also 

saves in this memory the address where this (original) 

data is saved in the original memory. These data are 

saved in a queue order. 

 The Watchdog also saves the states of all processor 

general purpose and control registers in the Recovery 

Memory in order to build-up a safe check-point for 

eventual recovery process.  

When the execution returns to main function the Watchdog 

performs the following actions: 

 The program data temporarily stored in the Recovery 

Memory are committed to the Secondary Memory in 

a FIFO (first in – first out) order. 

 The stack register states saved in the Recovery 

Memory are discarded. The data saved in this step are 

just the data owned by the piece of stack that was not 

released yet by the program execution and the data in 

other memory spaces with write permission (e.g., 

heap and data). 

 And the processor continues normal execution. 

b.2) Recovery Process (upon attack detection): 

When the Watchdog detects a return address overwritten 

it raises the Error detection signal (Fig. 2) to the Recovery 

Mechanism Block, which in turn performs the following steps: 

 The program execution is stopped. 

 The system is rolled back to the most recent safe-

checkpoint labeled by the Recovery Mechanism 

Block in run-time. This safe point is the correct return 

address of the function CALL whose “RET” address 

was object of attack. So, the registers states saved in 

the Recovery Memory will be attributed by the 

Recovery Mechanism Block to the processor (general 

purpose and control) registers. 

 All data saved in the Recovery Memory (including the 

stack registers data) will be discarded. 

 The Recovery Mechanism Block overwrites the 

original memory with data stored in the Secondary 

Memory, and 

 Finally, the program restarts running. 

 

If a second function CALL is executed before returning 

from the current function under execution (nested function 

CALL) then the approach stops saving program data in the 

current Recovery Memory (for instance, assume this as the 

Recovery Memory - Level 1) and switches to save data 

(including all processor general purpose and control registers) 

into another memory area (let us say, Recovery Memory - 

Level 2) and so successively. Similarly, when the processor 

returns from the second function CALL to the function that 

called it (first function CALL) the program data temporarily 

stored in the Recovery Memory – Level 2 are committed to 

the Recovery Memory – Level 1 and the stack register states 

saved in the Recovery Memory – Level 2 are discarded. 

In the event of attack detection, the processor is rolled back 

to the immediate lower Recovery Memory Level. For instance, 

assume that the processor is returning from a function CALL 

where all program data and processor general purpose and 

control registers are being saved in the Recovery Memory – 

Level 2, then the registers states saved in the Recovery 

Memory – Level 2 will be attributed by the Recovery 

Mechanism Block to the processor (general purpose and 

control) registers. Next, all data saved in the Recovery 

Memory – Level 2 (including the stack registers data) are 

discarded, the Recovery Mechanism Block overwrites the 

original memory with data stored in the Recovery Memory – 

Level 1, and the program restarts running from the first 

function CALL. 

IV. Experimental Results 

This approach was implemented on the LEON3 softcore 
processor [7]. The LEON3 is a synthesizable VHDL model of a 
32-bit processor compliant with the SPARC V8 architecture. 
The model is highly configurable, and particularly suitable for 
system-on-a-chip (SoC) designs. Fig. 3 depicts the general 
block diagram of the processor core. Blocks indicated by (*) 
are optional and are included in the processor main architecture 
if selected by the designer. Therefore, the basic processor 
configuration is the LEON3 CPU Integer Unit, the AMBA 
AHB Master Interface and the AMBA Bus, which connects the 
CPU to the system memory. 

Table 1 shows the area overhead added by the watchdog 
implementation. This table depicts results for two different 
implementations of the watchdog according to its ability to 
monitor and capacity to store nested function calls: in the first 
implementation, the watchdog is able to handle 256 function 

http://www.sparc.org/
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calls and return addresses, while in the second implementation 
it supports the monitoring and storage of 64 return addresses. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. General block diagram of the LEON3 softcore processor. 

 
Table 1. Area overhead yielded by the Watchdog implementation. 

Return 
Address 
Capacity  

Leon3 + 
Watchdog         

[nº primitives] 

Watchdog entity 
[nº primitives] 

Area 
Overhead 

[%]  

256 13402 1016 7.58 

64 12997 611 4.70 

 

To validate this approach a simple C program was 

implemented. This program performs a buffer overflow that 

overwrites a return address located in the stack. As expected, 

when the processor tries to execute the return address, the 

watchdog immediately generates the exception signal due to 

return address overwritten. In the sequence, the recovery 

mechanism successfully rollbacks the processor to the most 

recent saved checkpoint. 

To make a more severe analysis of the approach, 

benchmark test programs were implemented with pieces of 

known vulnerable C codes. These vulnerable pieces of C code 

were obtained from vulnerable test benchmarks published in 

the CVE (Common Vulnerabilities and Exposures) [8]. These 

code snippets were adapted and included into the test program 

source codes. Then, while running these programs the 

Watchdog and the Recovery Mechanism successfully 

generated the exception signal and recovered system from the 

unsafe state. 
Finally, we have also checked the attack detection latency 

of the Watchdog. More precisely, we measured the time 
between the instant at which the Watchdog detects that an 
incorrect return (“RET”) instruction will be executed in the 
processor pipeline and the instant at which the correct return 

address of the function CALL whose “RET” address was object 
of attack is copied into the Program Counter: 
PC=CorrectRetAddress . In this case, the measured attack 
detection latency was 4 clock cycles. 

V. Final Considerations 

This paper presented a hardware-based approach to protect 

systems from stack smashing attacks. Additionally, we have 

presented a preliminary discussion on the recovery process for 

the system from the unsafe state by rolling-back the processor 

to the last saved checkpoint.  

Experimental results show that this approach successfully 

detected and recovered 100% of the injected attacks under the 

analyzed situations. The approach yields a low area overhead 

associated with extremely low attack detection latency. 

Currently, we are implementing a complete case study in 

order to estimate the area overhead induced by the Recovery 

Block, for different levels of nested functions CALLs. 
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