

11

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

Hardware-Based Stack Smashing Attack Detection &

Preliminaries on Recovery Procedure

Raphael Segabinazzi Ferreira, Fabian Vargas, Letícia Bolzani Poehls

Abstract - In recent years, computer systems belonging to large

companies, governments as well as personal computers have been

experiencing an increasing wave of attacks that disrupt their

normal operation or leak sensitive data. In this context, this

paper presents a hardware-based approach (here namely a

watchdog connected to the processor bus) which aims at detecting

and recovering the system from stack smashing buffer overflow

attack. Compared to existing approaches, the proposed technique

does not need application code recompilation or use of any kind

of supervisor software (e.g., an Operating System - OS) to

manage memory usage. To validate the approach, a case-study

based on the LEON3 softcore processor and benchmark test

codes have been implemented. Experimental results indicate that

this approach is able to detect and recover from an intrusion

tentative for 100% of the test cases, while yielding low area

overhead, negligible attack detection latency and processor

performance degradation.

Keywords - Stack Smashing Buffer Overflow Attack, Malicious

Code Injection, Attack Detection and Recovery, Dynamic

Integrity Checking, Secure Embedded System.

I. Introduction

The need to include security mechanisms in electronic

devices has dramatically grown with the widespread use of

such devices in our daily life. In this scenario this work

presents a hardware-based approach (here defined as a

watchdog connected to the processor bus) which aims at

detecting and recovering the system from stack smashing

buffer overflow attack. The detection is done when the

execution program returns from a function call. In the

sequence, this work proposes a way to securely recover the

system from the intrusion detection event. The preliminaries

of this work were first published in [1], where the detection

mechanism was first introduced. The present paper represents

a continuation of this work, by introducing the recovery

process, after the intrusion detection event by the watchdog.

II. Preliminaries

a) Stack Smashing Buffer Overflow Attack:

Buffer overflow attacks exploit a lack of bounds checking

on the size of input being stored in a buffer array in memory.

By writing data past the end of an allocated array, the attacker

can make arbitrary changes to program state stored adjacent to

Raphael Segabinazzi Ferreira, Fabian Vargas and Letícia Bolzani Poehls are

with the Catholic University – PUCRS. Electrical Engineering Dept.
Av. Ipiranga 6681.

90619-900, Porto Alegre, Brazil.

the array. By far, the most common data structure to corrupt in

this fashion is the stack, called a “stack smashing” or “buffer

overflow” attack.

Many C programs have buffer overflow vulnerabilities,

both because the C language lacks array bounds checking, and

because the culture of C programmers encourages a

performance-oriented style that avoids error checking where

possible [2].

The common form of buffer overflow exploitation is to

attack buffers allocated on the stack. Stack smashing attacks

strive to achieve two mutually dependent goals:

i) Inject Attack Code: The attacker provides an input string

that is actually an executable binary code native to the

machine being attacked. Typically, this code is simple and

does something similar to exec(“sh”) to produce a root shell.

ii) Change the Return Address: There is a stack frame for a

currently active function above the buffer being attacked on

the stack. The buffer overflow changes the return address to

point to the attack code. When the function returns, instead of

jumping back to where it was called from, it jumps into the

attack code.

b) Related Works:

Several efficient software-based as well as hardware-based
dynamic integrity checking techniques [3,4] have been
proposed in the literature. However, software-based techniques
suffer from performance overheads as high as 60%, while
hardware-based approaches result in average overheads of
about 18% [5]. These are daunting numbers. Additionally,
some of these approaches [5,6] need application code
recompilation to compute specific information (hashes of
application program’s instruction addresses and opcodes) that
is later used at runtime to detect attacks.

III. The Proposed approach

This work proposes two assumptions (see Fig. 1): (1) a

watchdog to detect malicious data overwritten in the return

addresses saved in the program stack, and (2) a method to

recover the system from the return address overwritten

detection. The overwritten activity occurs in buffer overflow

conditions and could be the tentative of a stack smashing

attack. So, this approach is able to detect a tentative of attack

and recover the system from this condition into a safe point

(by means of a checkpoint previously saved during normal

execution).

12

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

Fig. 1. General architecture of the proposed approach.

The proposed watchdog is based on two specific structures:
(a) the logic implemented in hardware to detect the return
address overwritten and (b) the memory block added to the
Watchdog architecture to store return addresses of system calls.
In more detail, this approach works as follows:

 Every time a call (“CALL”) instruction is executed by
the processor, the return address is stored in the original stack
(typically a memory address or a dedicated register inside the
processor) and in the Watchdog Memory Block;

 Every time a return instruction is executed, the
Watchdog performs a comparison between the return address
stored in the original stack and the return address stored in the
Watchdog Memory Block. In this case, one of these two
situations may occur:

o In case of a positive comparison, the fault-free
execution of the code continues and no action is taken by the
Watchdog;

o In case of a negative comparison, the Watchdog raises
a signal to the Recovery Mechanism.

Therefore, in case of occurring an overflow on the original
stack that corrupts the current return address, such address
remains unchanged in the Watchdog Memory Block. This
condition guarantees the detection of tentative of intrusion by
comparing the return address overwritten in the original stack
against the (fault-free) return address stored in the Watchdog
Memory Block. In the sequence, the Watchdog does not allow
the system to branch to any possible malicious code pointed by
the corrupted return address and then, raises a signal to trigger
the recovery process.

Starting from the signal generated by the Watchdog, the
recovery algorithm rollbacks the processor to the last safe-
checkpoint generated previously in run-time. This safe point is
the correct return address of the function CALL whose “RET”
address was object of attack. When the rollback process is
complete, the Watchdog releases the processor to run again
normally.

Given the above exposed, the proposed approach presents
the following features and advantages compared to the existing
techniques:

 It does not need application code recompilation to

compute specific information (hashes of application program’s

instruction addresses and opcodes) that is later used at runtime

to detect attacks.

 It is not based on any software component and

considering that the Watchdog works in parallel with processor

execution, the proposed approach does not incur in

performance overhead.

 The watchdog detection mechanism requires a low

area overhead.

 Extremely low attack detection latency, since the

Watchdog works in parallel with the processor execution.

a) Attack Detection

As observed in Fig. 1, the Watchdog monitors some

internal signals from the Execution Stage of the processor

pipeline. Such signals are:

o The “OpCode” of the instruction that is leaving the Execution

Stage of the pipeline;

o The bit “annul”, whose function is to indicate if the instruction

that is leaving the Execution Stage of the pipeline will be actually

executed by the processor or it will be discarded due to

speculative execution.

o The “Program Counter” (PC), which is saved into the

ShadowStack in case a function “CALL” is performed. After the

function execution, the PC is defined as the return address that

will be used to return processor control to the point where the

application was interrupted.

o The “jmp_addr” signal, which points to the function return

address that will be executed.

Fig. 2 shows the internal blocks of the Watchdog. As

detailed above, it grabs a set of 4 specific pipeline internal

signals. The Instruction Decoder Block uses the instruction

“OpCode” and the “annul” signal to decode and check if the

current instruction will be executed. If the Instruction Decoder

Block decodes a function “CALL”, it will send the “icall”

signal to the ShadowMem Control Block. In this case, the

ShadowMem Control Block will save the current PC retrieved

from the pipeline (“Curr_PC” signal) into the ShadowMem

Block. Instead, if the Instruction Decoder Block decodes a

function “RET”, it will send the “ijmp” signal to the

ShadowMem Control Block that will recover from the

ShadowMem Block the last PC saved therein and send it (in

conjunction with a “compare” signal) to the Decision Block.

Fig. 2. Internal blocks of the Watchdog.

When the Decision Block receives the “compare” signal

and the “last PC”, it performs a comparison between this

value (the “last PC”) and the “jmp_addr” retrieved from the

pipeline. If this comparison returns true, no action is required.

Nevertheless, if the comparison returns false, the “last PC”

ShadowMem

Control

ShadowMem

Decision

Block

Exception

Routine

exception

Error detection indication (to

the Recovery Mechanism)

Pipeline

Internal

Signals

“last PC”

“last PC”

icall/

ijmp

PC

OpCode

annul

“curr_PC”

“last PC”

Instruction

Decoder

jmp_addr

compare

Processor Core

Watchdog Recovery
Mechanism Memory Block Recovery

Signals

Recovery
Signals

Pipeline
Internal
Signals

13

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

and an “exception” signal are sent to the Exception Routine

Block.

When the Exception Routine Block receives the

“exception” signal, it raises a signal to the Recovery

Mechanism Block to trigger the recovery process. At this

point, the recovery process is based on a dedicated algorithm

that rolls back the processor to the last safe-checkpoint labeled

by the Recovery Mechanism Block, concurrently with

processor execution. This checkpoint is the correct return

address of the function CALL whose “RET” address was

object of attack). When the rollback process is complete, the

Watchdog releases the processor to run again normally.

b) Attack Recovery

The recovery process can be divided into two steps: the

Regular Execution and the Recovery Process itself.

b.1) Regular Execution (before attack detection):

When the program is running on the main function, the

execution data is saved in the original memory (as in any

conventional processor) and in the Secondary Memory settled

in the Recovery Mechanism Block. When processor execution

leaves the main function by means of a function CALL:

 The processor continues saving the program data into

the original memory.

 The Watchdog stops saving data in the Secondary

Memory and starts saving program data on the

Recovery Memory which is also sitting in the

Recovery Mechanism Block. The Watchdog also

saves in this memory the address where this (original)

data is saved in the original memory. These data are

saved in a queue order.

 The Watchdog also saves the states of all processor

general purpose and control registers in the Recovery

Memory in order to build-up a safe check-point for

eventual recovery process.

When the execution returns to main function the Watchdog

performs the following actions:

 The program data temporarily stored in the Recovery

Memory are committed to the Secondary Memory in

a FIFO (first in – first out) order.

 The stack register states saved in the Recovery

Memory are discarded. The data saved in this step are

just the data owned by the piece of stack that was not

released yet by the program execution and the data in

other memory spaces with write permission (e.g.,

heap and data).

 And the processor continues normal execution.

b.2) Recovery Process (upon attack detection):

When the Watchdog detects a return address overwritten

it raises the Error detection signal (Fig. 2) to the Recovery

Mechanism Block, which in turn performs the following steps:

 The program execution is stopped.

 The system is rolled back to the most recent safe-

checkpoint labeled by the Recovery Mechanism

Block in run-time. This safe point is the correct return

address of the function CALL whose “RET” address

was object of attack. So, the registers states saved in

the Recovery Memory will be attributed by the

Recovery Mechanism Block to the processor (general

purpose and control) registers.

 All data saved in the Recovery Memory (including the

stack registers data) will be discarded.

 The Recovery Mechanism Block overwrites the

original memory with data stored in the Secondary

Memory, and

 Finally, the program restarts running.

If a second function CALL is executed before returning

from the current function under execution (nested function

CALL) then the approach stops saving program data in the

current Recovery Memory (for instance, assume this as the

Recovery Memory - Level 1) and switches to save data

(including all processor general purpose and control registers)

into another memory area (let us say, Recovery Memory -

Level 2) and so successively. Similarly, when the processor

returns from the second function CALL to the function that

called it (first function CALL) the program data temporarily

stored in the Recovery Memory – Level 2 are committed to

the Recovery Memory – Level 1 and the stack register states

saved in the Recovery Memory – Level 2 are discarded.

In the event of attack detection, the processor is rolled back

to the immediate lower Recovery Memory Level. For instance,

assume that the processor is returning from a function CALL

where all program data and processor general purpose and

control registers are being saved in the Recovery Memory –

Level 2, then the registers states saved in the Recovery

Memory – Level 2 will be attributed by the Recovery

Mechanism Block to the processor (general purpose and

control) registers. Next, all data saved in the Recovery

Memory – Level 2 (including the stack registers data) are

discarded, the Recovery Mechanism Block overwrites the

original memory with data stored in the Recovery Memory –

Level 1, and the program restarts running from the first

function CALL.

IV. Experimental Results

This approach was implemented on the LEON3 softcore
processor [7]. The LEON3 is a synthesizable VHDL model of a
32-bit processor compliant with the SPARC V8 architecture.
The model is highly configurable, and particularly suitable for
system-on-a-chip (SoC) designs. Fig. 3 depicts the general
block diagram of the processor core. Blocks indicated by (*)
are optional and are included in the processor main architecture
if selected by the designer. Therefore, the basic processor
configuration is the LEON3 CPU Integer Unit, the AMBA
AHB Master Interface and the AMBA Bus, which connects the
CPU to the system memory.

Table 1 shows the area overhead added by the watchdog
implementation. This table depicts results for two different
implementations of the watchdog according to its ability to
monitor and capacity to store nested function calls: in the first
implementation, the watchdog is able to handle 256 function

http://www.sparc.org/

14

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 2 [ISSN 2250-3765]

Publication Date : 31 August, 2016

calls and return addresses, while in the second implementation
it supports the monitoring and storage of 64 return addresses.

Fig. 3. General block diagram of the LEON3 softcore processor.

Table 1. Area overhead yielded by the Watchdog implementation.

Return
Address
Capacity

Leon3 +
Watchdog

[nº primitives]

Watchdog entity
[nº primitives]

Area
Overhead

[%]

256 13402 1016 7.58

64 12997 611 4.70

To validate this approach a simple C program was

implemented. This program performs a buffer overflow that

overwrites a return address located in the stack. As expected,

when the processor tries to execute the return address, the

watchdog immediately generates the exception signal due to

return address overwritten. In the sequence, the recovery

mechanism successfully rollbacks the processor to the most

recent saved checkpoint.

To make a more severe analysis of the approach,

benchmark test programs were implemented with pieces of

known vulnerable C codes. These vulnerable pieces of C code

were obtained from vulnerable test benchmarks published in

the CVE (Common Vulnerabilities and Exposures) [8]. These

code snippets were adapted and included into the test program

source codes. Then, while running these programs the

Watchdog and the Recovery Mechanism successfully

generated the exception signal and recovered system from the

unsafe state.
Finally, we have also checked the attack detection latency

of the Watchdog. More precisely, we measured the time
between the instant at which the Watchdog detects that an
incorrect return (“RET”) instruction will be executed in the
processor pipeline and the instant at which the correct return

address of the function CALL whose “RET” address was object
of attack is copied into the Program Counter:
PC=CorrectRetAddress . In this case, the measured attack
detection latency was 4 clock cycles.

V. Final Considerations

This paper presented a hardware-based approach to protect

systems from stack smashing attacks. Additionally, we have

presented a preliminary discussion on the recovery process for

the system from the unsafe state by rolling-back the processor

to the last saved checkpoint.

Experimental results show that this approach successfully

detected and recovered 100% of the injected attacks under the

analyzed situations. The approach yields a low area overhead

associated with extremely low attack detection latency.

Currently, we are implementing a complete case study in

order to estimate the area overhead induced by the Recovery

Block, for different levels of nested functions CALLs.

Acknowledgment

This work has been supported in part by CNPq (National Science
Foundation, Brazil) under contract n. 303701/2011-0 (PQ) and
Hewlett-Packard Brazil Ltd. using incentives of Brazilian Informatics
Law (8.2.48 from 1991).

References

[1] R. Segabinazzi Ferreira, F. Vargas. “ShadowStack: A new approach for

secure program execution”, Microelectronics and Reliability Journal,
55(9) August 2015, pp. 2077-2081.

[2] B. P. Miller, D. Koski, C. Pheow Lee, V. Maganty, R. Murthy, A.

Natarajan, J. Steidl. “Fuzz Revisited: A Reexamination of the Reliability

of UNIX Utilities and Services”, Report: University of Wisconsin, 1995.

[3] M. L. Corliss, E. C. Lewis, A. Roth, “Using DISE to Protect Return
Addresses from Attack”, Workshop on Architectural Support for

Security and Anti-Virus (WASSA), Oct. 2004.

[4] Y. Park., Z. Zhang, G. Lee, “Microarchitectural Protection Against

Stack-Based Buffer Overflow Attacks”, IEEE Micro, vol. 26 , issue 4,
July-Aug. 2006.

[5] A. K. Kanuparthi, R. Karri, G. Ormazabal, S. Addepalli, "A High-

Performance, Low-Overhead Microarchitecture for Secure Program
Execution", IEEE International Conference on Computer Design

(ICCD), Oct 2012, Montreal, Canada.

[6] M. A. Schuette, J. P. Shen, “Processor Control Flow Monitoring Using

Signatured Instruction Streams”, IEEE Transactions on Computers, vol.
36, no. 3, March 1987, pp. 264-276.

[7] URL: http://gaisler.com/index.php/products/processors/leon3. Last visit:

April 2016.

[8] Common Vulnerabilities and Exposures - The Standard for Information

Security Vulnerability Names. URL: https://cve.mitre.org/. Last access:
April 2016.

LEON3 CPU – Integer Unit (IU)

AHB Bus

FPU* Cache*

MMU*

AMBA AHB Master Interface

Peripherals

Co-Processor*

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=35278
http://gaisler.com/index.php/products/processors/leon3
https://cve.mitre.org/

